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Preface

A famous Indian saying can be approximatively phrased in the following way: “Our
earth is not just a legacy from our parents; it is a loan from our children.”

In mathematical analysis, a precious legacy has been given to us: differential
calculus and integral calculus are tools that play an important role in the present state
of knowledge and technology. They even gave rise to a philosophical opinion, often
called determinism, that amounts to saying that any phenomenon can be predicted,
provided one knows its rules and the initial conditions. Such a triumphant claim has
been mitigated by modern theories such as quantum mechanics. The “fuzziness” one
meets in this book presents some analogy with modern mechanics. In some sense,
it is the best we can leave to our children in case they have to deal with rough data.

In the middle of the nineteenth century, Weierstrass made clear the fact that not
all functions are differentiable. He even proved that there are continuous functions of
one real variable that are nowhere differentiable. Although such “exotic” functions
are not negligible, it appears that most nonsmooth functions that are met in concrete
mathematical problems have a behavior that is not beyond the reach of analysis.

It is the purpose of the present book to show that an organized bundle of
knowledge can be applied to situations in which differentiability is not present.

In favorable cases, such as pointwise maxima of finite families of differentiable
functions or sums of convex functions with differentiable functions, a rather simple
apparatus allows us to extend in a unified way the rules known in the realms
of convex analysis and differentiable analysis. The pioneers in this restricted
framework were Pshenichnii, loffe, and Tikhomirov (and later on, Demy’anov,
Janin, among others). For general functions, more subtle constructions must be
devised.

Already at this elementary stage, a combination of geometrical and analytical
viewpoints gives greater and more incisive insight. Such a unified viewpoint is
one of the revolutionary characteristics of nonsmooth analysis: functions, sets,
mappings, and multimappings (or correspondences) can be considered to be equally
important, and the links between them allow us to detect fruitful consequences.
Historically, geometrical concepts (tangent and normal cones with Bouligand,
Severi, Choquet, Dubovitskii-Milyutin, . .. ) appeared earlier than analytical notions
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viii Preface

(generalized directional derivatives, subdifferentials with Clarke, Ioffe, Kruger,
Mordukhovich, ...).

On the other hand, the variety of situations and needs has led to different
approaches. In our opinion, it would not be sensible to leave the reader with the
impression that a single type of answer or construction can meet all the needs one
may encounter (it is not even the case with smooth calculus). It is our purpose to give
the reader the ability to choose an appropriate scheme depending on the specificities
of the problem at hand. Quite often, the problem itself leads to an adapted space. In
turn, the space often commands the choice of the subdifferential as a manageable
substitute for the derivative.

In this book we endeavor to present a balanced picture of the most elementary
attempts to replace a derivative with a one-sided generalized derivative called a
subdifferential. This means that instead of associating a linear form to a function at
some reference point in order to summarize some information about the behavior of
the function around that point, one associates a bunch of linear forms. Of course, the
usefulness of such a process relies on the accurateness of the information provided
by such a set of linear forms. It also relies on the calculus rules one can design.
These two requirements appear to be somewhat antagonistic. Therefore, it may be
worthwhile to dispose of various approaches satisfying at least one of these two
requirements.

In spite of the variety of approaches, we hope that our presentation here will give
an impression of unity. We do not consider the topic as a field full of disorder.
On the contrary, it has its own methods, and its various achievements justify a
comprehensive approach that has not yet been presented. Still, we do not look
for completeness; we rather prefer to present significant tools and methods. The
references, notes, exercises, and supplements we present will help the reader to get
a more thorough insight into the subject.

In writing a book, one has to face a delicate challenge: either follow a tradition or
prepare for a more rigorous use. Our experience with texts that were written about
a lifetime ago showed us that the need for rigor and precision has increased and
is likely to increase more. Thus, we have avoided some common abuses such as
confusing a function with its value, a sequence with its general term, a space with
its dual, the gradient of a function with its derivative, the adjoint of a continuous
linear map with its transpose. That choice may lead to unusual expressions. But in
general, we have made efforts to reach as much simplicity as possible in proofs,
terminology and notation, even if some proofs remain long. Moreover, we have
preferred suggestive names (such as allied, coherence, gap, soft) to complicated
expressions or acronyms, and we have avoided a heavy use of multiple indices,
of Greek letters (and also of Cyrillic, Gothic, Hebrew fonts). It appears to us that
sophisticated notation blossoms when the concepts are fresh and still obscure; as
soon as the concepts appear as natural and simple, the notation tends to get simpler
too. Of course, besides mathematicians who are attached to traditions, there are
some others who implicitly present themselves as magicians or learned people and
like to keep sophisticated notation.



Preface ix

Let us present in greater detail the analysis that served as a guideline for this
book.

The field of mathematics offers a number of topics presenting beautiful results.
However, many of them are rather remote from practical applications. This fact
makes them not too attractive to many students. Still, they are proposed in many
courses because they are considered either as important from a theoretical viewpoint
or precious for the formation of minds.

It is the purpose of this book to present fundamental aspects of analysis that have
close connections with applications. There is no need to insist on the success of
analysis. So many achievements of modern technology rely on methods or results
from mathematical analysis that it is difficult to imagine what our lives would be
like if the consequences of the so-called infinitesimal analysis of Fermat, Leibniz,
Newton, Euler and many others would be withdrawn from us.

However, the classical differential calculus is unable to handle a number of
problems in which order plays a key role; J.-J. Moreau called them “unilateral
problems,” i.e., one-sided problems. Usually, they are caused by constraints or
obstacles.

A few decades ago, some tools were designed to study such problems. They
are applied in a variety of fields, such as economics, mechanics, optimization,
numerical analysis, partial differential equations. We believe that this rich spectrum
of applications can be attractive for the reader and deserves a sequel to this book
with complementary references, since here we do not consider applications as
important as those in optimal control theory and mathematical analysis. Also, we
do not consider special classes of functions or sets, and we do not even evoke
higher-order notions, although considering second-order generalized derivatives of
nondifferentiable functions can be considered a feat!

Besides some elements of topology and functional analysis oriented to our
needs, we gather here three approaches: differential calculus, convex analysis, and
nonsmooth analysis. The third of these is the most recent, but it is becoming a
classical topic encompassing the first two.

The novelty of a joint presentation of these topics is justified by several
arguments. First of all, since nonsmooth analysis encompasses both convex analysis
and differential calculus, it is natural to present these two subjects as the two basic
elements on which nonsmooth analysis is built. They both serve as an introduction
to the newest topic. Moreover, they are both used as ingredients in the proofs of
calculus rules in the nonsmooth framework. On the other hand, nonsmooth analysis
represents an incentive to enrich convex analysis (and maybe differential calculus
too, as shown here by the novelty of incorporating directional smoothness in the
approach). As an example, we mention the relationship between the subdifferential
of the distance function to a closed convex set C at some point z out of C and
the normal cone to the set C at points of C that almost minimize the distance to z
(Exercises 6 and 7 of Sect. 7.1 of the chapter on convex analysis). Another example
is the fuzzy calculus that is common to convex analysis and nonsmooth analysis and
was prompted by the last domain.
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In this book, we convey some ideas that are simple enough but important. First
we want to convince the reader that approximate calculus rules are almost as useful
as exact calculus rules. They are more realistic, since from a numerical viewpoint,
only approximate values of functions and derivatives can be computed (apart from
some special cases).

Second, we stress the idea that basic notions, methods, or results such as
variational principles, methods of error bounds, calmness, and metric regularity
properties offer powerful tools in analysis. They are of interest in themselves, and
we are convinced that they may serve as a motivated approach to the study of metric
spaces, whereas such a topic is often considered very abstract by students.

The penalization method is another example illustrating our attempt. It is a
simple idea that in order to ensure that a constraint (for instance a speed limit or
an environmental constraint) is taken into account by an agent, a possible method
consists in penalizing the violation of this constraint. The higher the penalty, the
better the behavior. We believe that such methods related to the experience of the
reader may enhance his or her interest in mathematics. They are present in the roots
of nonsmooth calculus rules and in the study of partial differential equations.

Thus, the contents of the first part can be used for at least three courses
besides nonsmooth analysis: metric and topological notions, convex analysis, and
differential calculus. These topics are also deeply linked with optimization questions
and geometric concepts.

In the following chapters dealing with nonsmooth analysis, we endeavor to
present a view encompassing the main approaches, whereas most of the books on
that topic focus on a particular theory. Indeed, we believe that it is appropriate to deal
with nonsmooth problems with an open mind. It is often the nature of the problem
that suggests the choice of the spaces. In turn, the choice of the nonsmooth concepts
(normal cones, subdifferentials, etc.) depends on the properties of the chosen spaces
and on the objectives of the study. Some concepts are accurate, but are lacking good
calculus rules; some enjoy nice convexity or duality properties but are not so precise.
We would like to convince the reader that such a variety is a source of richness rather
than disorder.

The quotation below would be appropriate if in the present case it corresponded
to what actually occurred. But the truth is that the book would never had been
written if Alexander Ioffe had not suggested the idea to the author and contributed
to many aspects of it. The author expresses his deepest gratitude to him. He also
wants to thank the many colleagues and friends, in particular, D. Azé, A. Dontcheyv,
E. Giner, A. Ioffe, M. Lassonde, K. Nachi, L. Thibault, who made useful criticisms
or suggestions, and he apologizes to those who are not given credit or given not
enough credit.

N’écrire jamais rien qui de soi ne sortit,

Et modeste d’ailleurs, se dire mon petit,

Soit satisfait des fleurs, des fruits, méme des feuilles,

Si c’est dans ton jardin a toi que tu les cueilles!
... Ne pas monter bien haut, peut-étre, mais tout seul!

Edmond Rostand, Cyrano de Bergerac, Acte 11, Scene 8
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Never to write anything that does not proceed from the heart,
and, moreover, to say modestly to myself, “My dear,

be content with flowers, with fruits, even with leaves,

if you gather them in your own garden!”

... Not to climb very high perhaps, but to climb all alone!

Pau and Paris, France Jean-Paul Penot
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Chapter 1
Metric and Topological Tools

I do not know what I may appear to the world, but to myself [
seem to have been only like a boy playing on the sea-shore, and
diverting myself in now and then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay
all undiscovered before me.

—Isaac Newton

We devote this opening chapter to some preliminary material dealing with sets,
set-valued maps, convergences, estimates, and well-posedness.

A mastery of set theory (or rather calculus with standard operations dealing with
sets) and of set-valued maps is necessary for nonsmooth analysis. In fact, one of
the most attractive features of nonsmooth analysis consists in easy and frequent
passages from sets to functions and vice versa. Moreover, several concepts of non-
smooth analysis become clear when one has some knowledge of set convergence.
As an example, recall that the tangent to a curve C at some xg € C is defined as the
limit of a secant passing through xy and another point x of C as x — x¢ in C.

In this first chapter we gather some basic material that will be used in the rest of
the book. Part of it is in standard use. However, we present it for the convenience of
the reader. It can serve as a refresher for various notions used in the sequel; it also
serves to fix notation and terminology. Thus, parts of it can be skipped by the learned
reader. Still, some elements of the chapter are not so classical, although widely used
in the field of nonsmooth analysis.

The most important results for further use are the Ekeland variational principle
expounded in Sect. 1.5 along with a convenient decrease principle, and the appli-
cation to metric regularity made in Sect. 1.6. The general variational principle of
Deville-Godefroy—Zizler obtained in Sect. 1.7 as a consequence of a study of well-
posedness will be given a smooth version in Chap.2. These variational principles
are such important tools for nonsmooth analysis that we already display some
applications and present in supplements and exercises several variants of interest.

J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathematics 266, 1
DOI 10.1007/978-1-4614-4538-8_1, © Springer Science+Business Media New York 2013
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Among the direct consequences of smooth and nonsmooth variational principles
are the study of conditioning of minimization problems, which is tied to the study
of error bounds and sufficient conditions in order to get metric regularity. All these
applications are cornerstones of optimization theory and nonsmooth analysis. For
obtaining calculus rules, variational principles will be adjoined with penalization
techniques in order to obtain decoupling processes. These techniques are displayed
in Sects. 1.6.4 and 1.6.5 and are rather elementary. These preparations will open
an easy route to calculus. But the reader is already provided with tools that give
precious information without using derivatives.

1.1 Convergences and Topologies

1.1.1 Sets and Orders

A knowledge of basic set theory is desirable for the reading of the present book,
as in various branches of analysis. We assume that the reader has such a familiarity
with the standard uses of set theory. But we recall here some elements related to
orders, because Zorn’s lemma yields (among many other results) the Hahn—Banach
theorem, which has itself numerous versions adapted to different situations.

Recall that a preorder or partial order or preference relation on a set X is a relation
A between elements of X, often denoted by <, with A(x) :={y € X : x <y} thatis
reflexive (x < x or x € A(x) for all x € X) and transitive (AoA CAie,x <y y<
z=x < zfor x,y,z € X). One also writes y > x instead of x <y or y € A(x) and
one reads, y is above x or y is preferred to x. A preorder is an order whenever it is
antisymmetric in the sense thatx <y, y <x=-x=yforevery x,y € X. Two elements
x, y of a preordered set (X, <) are said to be comparable if either x <y ory < x. If
such is the case for all pairs of elements of X, one says that (X, <) is totally ordered.
That is not always the case (think of the set X := Z2(S) of subsets of a set S with
the inclusion or of a modern family with the order provided by authority). Given
a subset S of (X, <), an element m of X is called an upper bound (resp. a lower
bound) of S if one has s < m (resp. m < s) for all s € S. A preordered set (/,<) is
directed if every finite subset F' of [ has an upper bound. A subset J of a preordered
set (1,<) is said to be cofinal if for all i € I there exists j € J such that j > i. A
map f : H — I between two preordered spaces is said to be filtering if for all i € [
there exists & € H such that f(k) > i whenever k € H satisfies k > h. A subset C of
(X, <) that is totally ordered for the induced preorder is called a chain. A preorder
on X is said to be upper inductive (resp. lower inductive) if every chain C has an
upper bound (resp. a lower bound). Recall that an element X of a preordered space
(X, <) is said to be maximal if for every x € X such that ¥ < x one has x <%; it is
called minimal if it is maximal for the reverse preorder. Zorn’s lemma can be stated
as follows; it is known to be equivalent to a number of other axioms, such as the
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axiom of choice, that seem to be very natural axioms. We shall not deal with such
aspects of the foundations of mathematics.

Theorem 1.1 (Zorn’s lemma or Zorn’s axiom). Every preordered set whose
preorder is upper (resp. lower) inductive has at least one maximal (resp. minimal)
element.

Exercises

1. Show that a subset C of a preordered space (X,<) is a chain if and only if
CxCCAUA! where A:={(x,y) :x <y}, A"l :={(x,y) : (,x) €A}.

2. Let (I,<) be a directed set. Show that if J C I is not cofinal, then 7 \ J is cofinal.

3. Let (X, <) be a preordered space. Check that the relation < defined by x < y if
x <y andnoty < xis transitive.

4. A map f: H — I between two preordered spaces is said to be homotone (resp.
antitone) if f(h) < f(1') (resp. f(K') < f(h)) when h < I'. It is isotone if it is a
bijection such that f and f~! are homotone. Show that if f is a homotone bijection,
if (H,<) is totally ordered, and if (1, <) is ordered, then f is isotone.

5. Show that a homotone map f : H — I between two preordered spaces is filtering
if and only if f(H) is cofinal.

6. Let J be a subset of a preordered space (I, <). An element s of I is a supremum
of [ifseM:={mel:VjeJ,j<m} and forall m € M one has s < m. Give an
example of a subset J of a preordered space (I, <) having more than one supremum.
Check that when < is an order, a subset of / has at most one supremum.

7. Check that when a subset J of a preordered space (I, <) has a greatest element
k, then k is a supremum of J and for every supremum s of J one has s < k. Note that
when a supremum s of J belongs to J, then s is a greatest element of J.

1.1.2 A Short Refresher About Topologies and Convergences

Most of the sequel takes place in normed spaces. However, it may be useful to
use the concepts of metric spaces and to have some notions of general topology. In
particular, we will use weak* topologies on dual Banach spaces. We will not attempt
to give an axiomatic definition of convergence (however, see Exercise 4). But it
is useful to master some notions of topology. Pointwise convergence of functions
cannot enter the framework of normed spaces or even metric spaces.

A topology on a set X is obtained by selecting a family of subsets called
the family of closed subsets having a stability property in terms of convergence.
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Equivalently, one usually defines a topology on X as the data of a family & of so-
called open subsets that satisfies the following two requirements:

(O1) The union of any subfamily of & belongs to &.
(02) The intersection of any finite subfamily of & belongs to &.

By convention, we admit that these two conditions include the requirements that
X and the empty set & belong to . A topological space (X, 0) is also denoted by
X if the choice of the topology & is unambiguous. A subset F of X is declared to be
closed if X \ F belongs to . The closure cl(S) of a subset S of a topological space
(X, 0) is the intersection of the family of all closed subsets of X containing S. It is
clearly the smallest closed subset of (X, &) containing S. The interior int(T') of a
subset T of (X, @) is the set X \ cl(S), where S := X \ T It is clearly the union of all
the open subsets of (X, &) contained in 7. A subset D of (X, &) is said to be dense
in a subset E of X if D C E and if E is contained in the closure of D. A topological
space is said to be separable if it contains a countable dense subset.

A map f: (X,0) — (X',0’) between two topological spaces is said to be
continuous if for every O’ € ¢ its inverse image f~1(0') := {x€ X : f(x) € 0'}
belongs to &'. The composition of two continuous maps is clearly continuous.

A topology &’ on X is said to be weaker than a topology O if the identity map
Ix : (X,0)— (X, 0") is continuous, i.e., if any member of &’ isin 0, i.e.,if 0'C 0.
Given a family ¢ of subsets of a set X, there is a topology & on X that is the weakest
among those containing ¢. Then one says that & generates 0. 1If 8 C O is such
that every element of & is an union of elements of %, one says that Z is a base of
0. 1t is easy to check that when & generates @, the family 2 of finite intersections
of elements of ¢ is a base of &. A subset V of a topological space (X,0) is a
neighborhood of some X € X if there exists some U € & suchthatx e U C V. A
family % of subsets of X is a base of neighborhoods of X if 7/ is contained in the
family .4 (%) of neighborhoods of ¥ and if for every V € .#/(X) there exists some
U € 7 suchthat U C V. Given # C 0, we see that A is a base of & iff (if and only
if) for all x € X, B(x) :== {U € B :x € U} is a base of neighborhoods of x.

The notion of continuity can be localized by using neighborhoods or neighbor-
hood bases. A map f: (X,0) — (X', 0") is said to be continuous at X € X if for
every neighborhood V' of f(X) in (X', &) there exists some V € .4/(X) such that
f(V) C V'. One can easily show that f is continuous if and only if it is continuous
at every point of X.

To a topology & on X, one can associate a convergence for nets and sequences
in X. Recall that a ner (or generalized sequence) (x;);c; in X is a mapping i — x;
from a directed (preordered) set / to X. A subnet of a net (x;)ics is a net (y;)jes
such that there exists a mapping 6 : J — [ that is filtering and such that y; = xq;
for all j € J. Note that in contrast to what occurs for subsequences, one takes for J
a directed set that may differ from /. It is often of the form J := I x K, where K is
another directed set, or a subset of 7 x K. One says that (x;);c; converges to some
x € X if for every V € .#/(X) one can find some iy € I such thatx; € V for all i > iy.
Then one writes (x;)je; — X or X = lim;¢; x;. One says that (x;);es has a cluster point
x € X if forevery V € .4 (X) and every h € I one can find some i € [ such thati > h
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and x; € V. One can show that X € X is a cluster point of (x;);s if and only if there
exists a subnet of (x;);c; that converges to X. The “if” condition is immediate. For
the necessary condition one can take J := {(i,V) € I x A (X) : x; € V}, a cofinal
subset of I x .4 (x) for the product order, and define 6 : J — I by 8(i,V) :=i. The
topology & on X is uniquely determined by its associated convergence for nets: a
subset C of X is closed iff it contains the limits of its convergent nets. In general
0 is not determined by the convergence of sequences. The aim of the following
proposition is to give the reader some familiarity with nets.

Proposition 1.2. A map f : X — Y between two topological spaces is continuous
atx € X if and only if for every net (x;)ier of X converging to X, the net (f(x;))ier
converges to f(X). Sequences can be used when N (%) has a countable base.

Proof. Necessity is immediate. Let us show sufficiency. Suppose f is not continuous
at X. Then there exists V € .4 (f(x)) such that for all U € .4/() there exists some
xy € U with f(xy) ¢ V. Then for the net (xu )ye_y (x) We have (xv)ye v ) — X, but

(f(xv))ve. (z) does not converge to f(%).

Let X or (X,d) be a metric space i.e., a pair formed by a space X and a function
d: X x X — R such that for all x,x’,x” € X, one has d(x,x") = d(x',x), d(x,x') =0
iff x = x/, and the so-called triangle inequality d(x,x”) < d(x,x') +d(x’,x”). Then
the function d, called a metric, induces a topology ¢ on X defined by G € O iff
for all x € G there exists some r > 0 such that the open ball B(x,r) :={x' € X :
d(x,x") < r} is contained in G. Thus & is the topology generated by the family of
open balls. In fact, this family is a base of ¢ and for all ¥ € X, the family of open
balls centered at X is a base of neighborhoods of ¥. In the sequel, the closed ball with
center x and radius » € R is the set

Blx,r] :={X € X :d(x,x') <r}.

The family of closed balls centered at x with positive radius is also a base of
neighborhoods of x. Thus continuity can be expressed with the help of €’s and §’s.
A map f: (X,d) — (X',d’) is said to be Lipschitzian if there exists some ¢ € R
such that d'(f(x1), f(x2)) < cd(x1,x;) for all x;,x; € X. The constant c is called a
Lipschitz constant (or rate, or rank). The least such constant is called the (exact)
Lipschitz rate of f. If this rate is 1, f is said to be nonexpansive. For x € X the
Lipschitz rate of f at x is the infimum of the Lipschitz rates of the restrictions of f
to the neighborhoods of x (and 4o if there is no neighborhood of x on which f is
Lipschitzian). If for all x € X there is a neighborhood V' of x such that the restriction
/| V is Lipschitzian, f is said to be locally Lipschitzian. On the product Z := X x Y
of two metric spaces (X,dx), (Y,dy) a metric d is called a product metric if the
canonical projections py : Z — X, py : Z — Y and the insertions jj, : x — (x,b),
Ja :y— (a,y) are nonexpansive.

The structure of metric spaces is richer than the structure of topological spaces.
In particular, one has the notion of a Cauchy sequence: a sequence (x,) of (X,d) is
called a Cauchy sequence if (d(x,,x,)) — 0 as n, p — +eo. A metric space is said to
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be complete if its Cauchy sequences are convergent. Since a sequence (x,) of (X,d)
converges to some x € X iff (d(x,,x)) — 0 as n — oo, convergence is reduced to
convergence of real numbers.

Whereas the product X of a family of metric spaces (Xs,d;) (s € S, an arbitrary
set) cannot be provided with a (sensible) metric in general, a product of topological
spaces (X;, Jy) (s € S) can always be endowed with a topology & that makes the
projections p; : X — X, continuous and that is as weak as possible. It is the topology
generated by the sets p, '(O;) for s € S, Oy € 0. Its associated convergence is
componentwise convergence. When (Xs, 05) := (Y, Oy) for all s € S, identifying the
product X with the set Y5 of maps from S to Y, the convergence associated with the
product topology & on X coincides with pointwise convergence: (f;)ic; — f in Y5
if forall s € S, (fi(s))icr — f(s). When Oy is the topology associated with a metric
dy on Y, a stronger convergence can be defined on Y*: it is the so-called uniform
convergence for which (f;)ic; — f iff (de(fi, f)) := (supyesdy (fi(s), f(s))) — 0.

In metric spaces one has notions of uniformity that are more demanding
than their topological counterparts. In particular, a map f : (X,dx) — (Y,dy) is
uniformly continuous if for all € € P := (0,4-c<) one can find some 6 € IP such that
dy(f(x),f(x')) < & whenever x,x” € X satisfy dy (x,x') < §. One can show that f is
uniformly continuous iff there exists a modulus i (i.e., a function u : R, — R :=
R4 U{+eo} continuous at 0 with £1(0) = 0) such that dy (f(x), f(x')) < u(dx (x,x))
for all x,x’ € X. Such a modulus is called a modulus of uniform continuity.
The example of f : x — x> shows that uniform continuity is more exacting than
continuity.

Given two topological spaces (W, &), (X', 0"), a subset X of W, and w € cl(X),
one says that f : X — X’ has a limit ¥ as x —x w (i.e., x — w with x € X), or
that f converges to X’ as x —x w, and one writes ¥ = limy_,y f(x), if for every
V' e 4 (X) there exists V € 4 (w) such that f(VNX) C V'.If X =W, one just
writes ¥’ = lim,_,,, f(x). Thus, f is continuous at w if and only if f has the limit f(w)
as x — w. Given another map g : X — Y with values in another topological space
(Y,¥) and some y € Y, one says that f has alimitX’ as g(x) — ¥, or that f converges
to X' as g(x) — ¥, and one writes X' = lim,(,)_,5 f(x), if for every V' € A4/ (¥') there
exists W € .4/ (¥) such that f(x) € V' for all x € g~ ! (W). Taking for g the canonical
injection of X into (Y,¥) = (W, &), one recovers the preceding notion of limit.

Given a directed set (I, <), let I, := I U {eo}, where oo is an additional element
satisfying i < eo for all i € I. Then one can endow /.. with the topology & defined
by G € 0 if either G is contained in / or there exists some & € [ such that i € G for
all i € L. such that i > h. Given a topological space (X, &), x € X, and a net (x;);e;
of X, one easily checks that (x;);e; — x if and only if the map f : L. — X given by
(i) :=xi, f(eo) := x is continuous at oo, if and only if f has limit x as i —; .

A topological space (X, &) is said to be Hausdorff (or T) if for every x,x' € X
with x # x’ one can find V € A4 (x), V' € A4 (x) such that VNV’ = &. Then the
limit of a net of X is unique. A topological space (X, ) is said to be regular
(or T3) if every x € X has a base of neighborhoods that are closed. Hausdorff
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topological groups, i.e., groups endowed with a topology for which the operation
and the inversion are continuous, and metric spaces are regular. A topological
space (X,0) is said to be compact if it is Hausdorff and if every net of X has
a convergent subnet. Equivalently, (X, &) is compact if for every covering (i.e., a
family of subsets whose union is X) of X by open sets has a finite subfamily that is
still a covering of X. Another characterization (obtained by taking complements) is
that every family (C;);c; that has the finite intersection property has a nonempty
intersection; here (C;)ie; has the finite intersection property if for every finite
subset J of I the intersection of the family (C;);es is nonempty. If (X,d) is a
metric space, then X is compact if and only if it is complete and precompact.
Precompact means that for every € > 0 one can find a finite subset F' of X such
that X = B(F,e) :={x€ X :3a € F,d(x,a) < €}.

We admit the following famous theorem, whose proof requires Zorn’s lemma
when the product has an infinite number of factors.

Theorem 1.3 (Tykhonov). The product of a family of compact topological spaces
is compact.

We define the lower limit (resp. upper limit ) of a net (r;);e; of real numbers by

liminfr; :=sup inf r;  (resp. limsupr;:=inf sup r;).
i€l hel €1, izh iel helieq, i>h

These substitutes for the limit always exist in R := R U {—oo, +-c0}. One can show
that liminfie; r; is the least cluster point of the net (r;);s in the compact space R. A
similar characterization holds for limsup;, r;.

Exercises

1. Prove the assertions of this section given without proofs. In particular, prove
Tykhonov’s theorem first for a product of two spaces, then in the general case.

2. Let (X,d) be a metric space. Check that the functions d’ := min(d, 1) and d” :=
d/(1+d) are bounded metrics inducing on X the topology associated with d.

3. (Urysohn’s theorem) Let S be a closed subset of a metric space (X,d) and let
f: S — R be a continuous function. Prove that there exists a continuous function g :
X — R such that g(x) = f (x) for x € S and such that g(X) C [e, B] if £(S) C [e, B].

4. (Convergence space) Show that the convergence of nets in a topological space
(X, 0) satisfies the following properties:

(a) Forevery x € X the constant net with value x converges to x.

(b) If (x,-)ieI — x and if (Xj)je] is a subnet of (x,-),'g, then (Xj)je] — X.

(c) If x € X and (x;)ies is a net of X such that for every subnet (x;);es of (xi)ics
there exists a subnet (x; )k of (x;)jes that converges to x, then (x;)ic; — x.
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These three properties can be taken for axioms of convergence spaces (also called
spaces with limits). Check these axioms for the convergence defined in Sect. 1.3.1
on the power set & (X) of a topological space X.

5. Show that a compact space is regular.

6. Show that X € X is in the closure of a subset S of a topological space X iff there
exists a net (x;);es of S that converges to X. Show that ¥ is in the interior of S iff for
every net (x;);je; — X there exists 4 € I such that x; € S for all i > h.

7. Prove Lebesgue’s lemma: given a sequentially compact subset K of a metric
space (X,d), i.e., a subset such that every sequence of K has a subsequence
converging in K and given a family (O;);c; of open subsets of X whose union
contains K, there exists some r > 0 such that for all x € K the ball B(x, ) is contained
in some O;.

8. Show that a metric space is separable iff it has a countable base of open sets.

9. (The window lemma) Let K (resp. L) be a compact subset of a topological space
X (resp. Y) and let W be an open subset of X x Y containing K x L. Prove that one
can find an open subset U of X containing K and an open subset V of Y containing
L such that U x V. C W. Give an interpretation in terms of building.

10. Let X, Y be topological spaces and let C := C(X,Y) be the set of continuous
maps from X to Y. The compact-open topology on C is the topology generated by
the sets W(K,G) := {f € C: f(K) C G}, where G is an open subset of ¥ and K is a
compact subset of X.

(a) Show that a topology 7 on C such that the evaluation map ¢ : C x X — Y
given by e(f,x) := f(x) is continuous is finer than the compact-open topology.
[Hint: Given f € W(K,G) use the preceding exercise to find some open
neighborhood V of f for .7 such that V x K C e~ (G).]

(b) Check that when X is locally compact the evaluation map e is continuous.

(c) Assuming that Y is a metric space, compare the compact-open topology with
the topology of uniform convergence on compact subsets of X.

1.1.3 Weak Topologies

As mentioned above, we will work essentially in normed spaces, i.e., linear spaces
equipped with a norm (see below for the definition if you have forgotten it) or even in
Banach spaces, i.e., complete normed spaces. We assume the reader is familiar with
such a framework, which is an important class of metric spaces, in which the metric
d associated to anorm ||-|| on a linear space X is given by d(x,y) = ||x — y||. A linear
map ¢ : X — Y between two normed spaces (X, |||y ), (¥, |]-|ly) is continuous (and in
fact Lipschitzian) if and only if there exists some ¢ € Ry such that ||£(x)]|, < c|x||x
for all x € X. The least such constant is called the norm of ¢. It turns the space
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L(X,Y) of continuous linear maps from X to Y into a normed space that is complete
whenever Y is complete. In particular, the (topological) dual space X* := L(X,R)
of a normed space X is always a Banach space. A norm ||-|| on the product X x Y
of two normed spaces is a product norm if its associated metric is a product metric.
That amounts to the following inequalities for all (x,y) € X x ¥:

116 9)loo 2= max(flcll e, [[Ylly) < [1Ge)F< Gyl = [xllx + ¥y -

In the infinite-dimensional case, it appears that compact subsets are scarce. A
natural means to get a richer family of compact subsets on a normed space (X, ||-||)
is to weaken the topology: then there will be more convergent nets, and since open
covers will be not as rich, finding finite subfamilies will be easier. The drawbacks
are that continuity of maps issued from X will be lost in general and that no norm
will be available to define the weakened topology if X is infinite-dimensional. A
partial remedy for the first inconvenience will be proposed in the next subsection.
Now, the lack of a norm will not be too dramatic if one realizes that the structure of
a topological linear space is preserved. That means that the two operations (x,y) —
x+yand (A4,x) — Ax will be continuous for the new topology. One will even have
a family of seminorms defining the topology, a seminorm on a linear space X being
a function p : X — R that is subadditive (i.e., such that p(x+y) < p(x) + p(y) for
all (x,y) € X x X) and absolutely homogeneous (i.e., such that p(Ax) = |A| p(x) for
all (A,x) € R x X) or positively homogeneous (i.e., such that p(Ax) = A p(x) for all
(A,x) € Ry x X) and even (i.e., such that p(—x) = p(x) for all x € X). Note that
a seminorm p is a norm iff p~'(0) = {0}. The topology associated with a family
(pi)ier of seminorms on X is the topology generated by the family of semiballs
Bi(a,r):={x€X :pi(x—a) <r}foralla e X,r € P,i €. Suchatopology is clearly
compatible with the operations on X, so that X becomes a topological linear space.
It is even a locally convex topological linear space in the sense that each point has a
base of neighborhoods that are convex. One can show that this property is equivalent
to the existence of a family of seminorms defining the topology.

On the (topological) dual space X* of a topological linear space X, i.e., on
the space of continuous linear forms on X, a natural family of seminorms is the
family (pyx)rex given by py(f) :=|f(x)| or, with a notation we will use frequently,
px(x*) := |(x*,x)|. Then a net (f;);c; of X* converges to some f € X* if and only
if for all x € X, (fi(x))ies — f(x); then we write (fi);e; — f. Thus, the obtained
topology on X*, called the weak™ topology, is just the topology w* induced by
pointwise convergence. It is the weakest topology on X* for which the evaluations
f+— f(x) are continuous for all x € X. Although this topology is poor, it preserves
some continuity properties. In particular, if X and Y are normed spaces and if
A € L(X,Y), its transpose (often called the adjoint) AT : Y* — X* defined by
AT(y*):=y*oAfory* €Y* or

(AT(),x) = (", A), (6,)") € X XY,
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is not just continuous for the topologies induced by the dual norms (the so-called
strong topologies); it is also continuous for the weak* topologies: when (y})ics 5
y* one has (AT(y!))ier — AT(y*), since for all x € X one has (AT(y")(x))ies =
(vF(A(x)))ier = ¥*(A(x)). Note that when X and Y are Hilbert spaces (i.e., Banach
spaces whose norms derive from scalar products), so that they can be identified with
their dual spaces, AT corresponds to the adjoint A* : Y — X of A characterized by
(A*(y) | x)x = (y| Ax)y forallx e X,y €Y, (- | -)x (resp. (- | -)y) denoting the scalar
product in X (resp. Y).

Let us show that there are sufficiently many linear forms on X* that are
continuous for the weak™ topology.

Proposition 1.4. The set of continuous linear forms on X* endowed with the weak*
topology can be identified with X.

Proof. By definition, for all x € X, the linear form e, : x* — (x*,x) on X* is con-
tinuous for the weak™ topology. Let us show that every continuous linear form f on
(X*,w*) coincides with some e,. We can find 0 > 0 and a finite family (ay,...,anm)
in X such that |f(x*)] < 1 for all x* € X* satisfying pg,(x*) := [(x*,a;)| < &
for i € Ny, := {1,...,m}. Setting x; := a;/0, we get |f(x*)| < max;<;<x|(x*,x:)],
since otherwise, by homogeneity, we can find x* € X* such that [f(x*)] = 1 and
max<j<m | (x*,x;)| < 1, a contradiction to the choice of a; and x;. Changing the
indexing if necessary, we may suppose that for some k € N,;,, x1,...,x; form a basis
of the linear space spanned by xi,...,x,. Let A := (x1,...,x) : X* — R¥. Then
denoting by N the kernel of A and by p : X* — X*/N the canonical projection, f
can be factorized into f = go p for some linear form g on X*/N. There is also
an isomorphism B : X* /N — R such that A is factorized into A = Bo p. Then f =
goB 'oA, whence f(x*) = c1x*(x1) + - +cpx* (x) for all x* € X*, where ¢y, ..., ¢k
are the components of go B~! in (R¥)*. Thus f = e, for x := c1x1 + - - + cxx € X.

O

The following result shows that in introducing the weak® topology we have
attained our aim of obtaining sufficiently many compact subsets.

Theorem 1.5 (Alaoglu-Bourbaki). Every weak® closed, bounded subset of the
dual space X* is weak* compact, i.e., is compact for the weak™ topology.

Proof. 1Tt suffices to show that the closed unit ball B* := By+ of X* is weak™ compact.
To do so, let us denote by § the closed unit sphere Sy of X, by H the space of
positively homogeneous functions on X, and by Hy the space of all the restrictions
to S of the elements of H. The restriction operator r : H — Hy is then a bijection,
with inverse given by r~! (k) (x) = th(t~'x) for x € X \ {0}, ¢ := ||x||, 7~ (h)(0) = 0.
Then r and r~! are continuous for the pointwise convergence topologies on H and
Hg, and for this topology Hs is homeomorphic to the product space RS. The subset
B* of H is easily seen to be closed for the pointwise convergence topology on H.
Moreover, 7(B*) is contained in [—1,1]%, which is compact, by Tikhonov’s theorem.
Thus, r(B*) and B* are compact in Hg and H respectively. It follows that B* is
compact in X* endowed with the weak™ topology. O
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The weak topology on X is the topology induced by the embedding of X into
X* = (X*)* given by j(x)(x*) :=x*(x) for x € X, x* € X*. Thus, it is the topology
induced by the family (ps)sex+ of seminorms on X given by p(x) := |f(x)| for
x € X, f € X*. The definition of the dual norm on X** shows that for all x € X
one has ||j(x)|/y- < ||x||; in fact, Corollary 1.172 of Subsection 1.4.2 shows that
equality holds, so that j is a monometry, i.e., an isometry from X onto its image
J(X). When j is surjective (hence an isometry), X is said to be reflexive. In general,
the weak topology does not provide compact subsets as easily as does the weak*
topology. However, when X is reflexive, since then the weak topology coincides
with the weak™ topology obtained by considering X as the dual of X*, we do get
a rich family of compact subsets. We state this fact in the following corollary; its
second assertion depends on another consequence of the Hahn—Banach theorem,
asserting that closed convex subsets of a Banach space are weakly closed. It will be
displayed later.

Corollary 1.6. Every bounded weakly closed subset of a reflexive Banach space X
is weakly compact. In particular, every bounded closed convex subset of X is weakly
compact.

When X is finite-dimensional, the weak® topology on X* coincides with the
strong topology (and similarly, the weak topology of X coincides with the topology
associated with the norm). In fact, a net (f;)ic; of X* converges to some f € X*
if and only if for every element b of a base of X the net (f;(b))ie; converges
to f(b), and this is enough to imply the convergence for the dual norm. If X
is infinite-dimensional, the weak (resp. weak™®) topology never coincides with the
strong topology (the one induced by the norm or dual norm). This stems from the
fact that no neighborhood V of 0 for the weak™ topology is bounded, since it contains
the intersection of the kernels of a finite family of linear forms.

Let us give without proofs some results of interest that are outside the scope of
our purposes, although they have some bearing on our study in the reflexive case.
We refer to [329,337,376,507] for the proofs.

Theorem 1.7 (Kaplanski). If X is in the weak closure w-cl(S) of a subset S of a
Banach space X, then there exists a countable subset D of S such that X € w-cl(D).

Theorem 1.8 (Eberlein-Smulian). For a subset S of a Banach space X the
following assertions are equivalent:

(a) w-cl(S) is weakly compact;
(b) Every sequence of S has a weakly convergent subsequence;
(c) Every sequence of S has a weak cluster point.

Theorem 1.9. A normed space X is reflexive if and only if its closed unit ball Bx
is weakly sequentially compact in the sense that every sequence of Bx has a weakly
convergent subsequence in By.
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For the next result (whose proof is given in [329, p. 426] for instance (f.i.)), we
recall that a topological space is said to be metrizable if its topology can be defined
by a metric.

Theorem 1.10. (a) The topology induced by the weak topology on every bounded
subset of a Banach space X is metrizable if and only if X* is separable.

(b) The topology induced by the weak® topology on every bounded subset of the
dual X* of a Banach space X is metrizable if and only if X is separable.

In fact, if X is separable and if D := {x, : n € N} is dense in By, then the
topology induced by the weak™* topology on a bounded subset of X* coincides with
the topology induced by the norm ||-||;, on X* defined by

x*[lp =3 27" " ()

n>0

It may be useful to consider a topology %, or bw* on the dual X* of a normed
space X, called the bounded weak® topology, that is weaker than the strong (or
norm) topology and stronger than the weak™ topology. It is the strongest topology
agreeing with the weak™ topology on weak* compact subsets of X*. Thus, a subset
of (X*,%}) is closed if and only if for all » > 0 its intersection with rBx« is weak*
closed. For convex subsets, no change occurs, thanks to the following result, due to
Banach and Dieudonné when C is a linear subspace.

Theorem 1.11 (Krein—Smulian). A convex subset C of the dual of a Banach space
X is bw*-closed if and only if it is weak™ closed.

Theorem 1.12. A linear form f on the dual X* of a Banach space X is continuous
for the bw*-topology if and only if it is continuous for the weak® topology, if and
only if it is of the form x* — x*(x) for some x € X.

Theorem 1.13. The bounded weak* topology W}, on the dual X* of a Banach space
X coincides with the topology of uniform convergence on compact subsets of X.

Thus, the bw*-topology is defined by the family of seminorms x* — pg(x*) :=
sup{|x*(x)| : x € K}, where K belongs to the family .Z"(X) of compact subsets of
X or to the family J#;(X) of symmetric (—K = K) compact subsets of X. Note that
when K € Z(X), pk is the support function of K: pg(x*) = sup{x*(x) : x € K}.
Since the family J#;(X) is stable by dilations, we get that a basis of neighborhoods
of 0 for the bw*-topology is formed by the family of polar sets

K= {x" e X" :x"(x) <1Vx €K}, K € #(X).

Proof. First, let us prove that for every compact subset K of X the set K is a
neighborhood of 0 for the topology #},. It suffices to show that

Vi={x"eX":VxeKx"(x) <1}
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is open for %, since 0 € V C K°. This means that for all r > 0, V N rBy~ is open
in the topology on rBx+ induced by the weak™® topology. Let X* € V NrBx+. There
exists s > 0 such that X*(x) < 1 —s for all x € K. Let F be a finite subset of X
such that 2K is contained in the union of the open balls B(a,s/2r) for a € F. Let
x* € (* +sF°) NrBy+, x* #%* and let w* := x* —%* € sF°N2rBx-+. Given x € K,
we pick a € F such that ||2x — al|| < s/2r, so that

xX(x) =% (x) + (1/2)w*(2x) < 1—s+ (1/2)w*(a) + (1/2)w*(2x — a)
<1l—s+(1/2)s4 (1/2)|w*|| (s/2r) < 1.

Thus (x* + (s~ 'F)°) N rBy+ C V. This shows that V N rBy- is a neighborhood of x*
in the topology on rByx+induced by the weak* topology, hence that V N rBy- is open
in that topology. Therefore V is open for #,.

Now, given an open neighborhood V of 0 for the bw*-topology #}, on X*, let us
find K € 2 (X) such that K° C V. By definition of %, for all n € N\ {0}, there
exists a finite subset F;, C X such that Fn0 NnBx+ C V. Let us first show that there
is a finite subset A, of (1/n)Bx such that ' NA%N (n+ 1)By+ C V. Suppose the
contrary. Then the family of sets

FONA n(n+1)By:-N(X\V),

for A in the family of finite subsets of (1/n)Byx, has the finite intersection property
(we use the fact that B NC? = (BUC)?). Since (n+ 1)Bx: N (X \ V) is a weak*
closed subset of the weak™ compact set (n+ 1)By+, the intersection of this family is
nonempty. Take x* in this intersection. Then x* € F2 N (n+ 1)By+, x* € X\ V, and
x*(x) < 1forall x € (1/n)By. Thus |[x*|| < nand x* € F?NnBx+ C V,a contradiction
tox* € X\V.

Setting F,1 := F, UA,, starting with Fy := {0}, we construct inductively a
sequence (F,) of finite subsets of X such that F,, 1 \ F, C (1/n)Bx and F) NnBx+ C
V for all n. The union K of the family (F;) is easily shown to be compact, and one
has KO C V. O

Exercises

1. The purpose of this exercise is to show that weak continuity of continuous maps
cannot be expected in general in an infinite-dimensional Banach space X.

(a) Prove that the unit sphere Sy of X is dense in the closed unit ball By for the
weak topology ©.

(b) Check the continuity of the retraction r : X — By given by r(x) :=x/max(||x||,1).

(c) Given x € X such that ||x|| = 1/2, let (x;);cs be a net of Sy weakly convergent to
x. Observe that (r(2x;));c; = (x;)ic; weakly converges to x and not to r(2x) = 2x.
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2. Show that a Banach space X is reflexive if and only if X* is reflexive.
3. Show that a closed subspace of a reflexive Banach space is reflexive.

4. A cone of a linear space is a subset stable by the homotheties #; : x — tx for all
¢t > 0. Show that a closed cone Q of a normed space X is weakly locally compact
(i.e., for each point X of Q there exists a weak neighborhood V of X such that NV
is weakly compact) if and only if there exists a neighborhood U of 0 such that
QNU is weakly compact. [Hint: Let fi,...,f, € X*besuchthat UyN---NU, CU
for U; := f; '((—eo,1]). Given X € Q, let t > max(1, fi(%),...,[,(%)). Let V; :=
£ Y(=oo,t]) fori=1,...,n. Then V := V; N---NV, is a weak neighborhood of X
and QNV =1(QNt~'V) Ct(QNU), which is weakly compact.]

5. Prove a similar result for a weak™ closed cone of a dual space endowed with the
weak™ topology.

6. (a) Show that the polar set P* of a cone P of a normed space X is a cone and is
given by P* = {x* € X* : (x*,x) <0Vx € P}.
(b) A base of a convex cone Q is a convex subset C of Q such that0 ¢ C and Q =
R4 C. Show that a closed convex cone P of a Banach space has a nonempty
interior if and only if its polar cone Q := P® has a weak* compact base.

7. (a) Check that the polar cone Q of the cone P := {0} x R, C R? is locally
compact but does not have a compact base.

(b) Prove that if Q is a weak™® closed convex cone of the dual of a Banach space,

Q has a weak™ compact base if and only if it is locally compact (see [336]).

8. Show that a bilinear map b : X x Y — Z between normed spaces (i.e., b is linear
with respect to each of its two variables) is continuous if and only if there exists
some ¢ € R such that ||b(x,y)|| < c|lx].||y|| for all x € X, y € Y. The least such
constant is called the norm of b. In particular, the evaluation e : X x L(X,Y) — Y
given by e(x, ) := ¢(x) is continuous.

9. Check that a continuous linear map A : X — X* from a normed space X into its
dual defines a continuous bilinear map b : X x X — R by setting b(x,y) := (Ax,y)
for x,y € X and that every continuous bilinear map b : X x X — R is obtained in
that way.

10. A function ¢ : X — R on a normed space is said to be quadratic if there exists a
symmetric bilinear map b : X X X — R such that g(x) = b(x,x) for all x € X. Check
that such a bilinear map is unique. Prove that b is continuous if and only if ¢ is
continuous. [Hint: Define b by b(x,y) := %[q(x—i—y) —q(x) —q(y)] forx,y € X.]

11. Prove the Cauchy—Schwarz inequality: for every bilinear form b whose associ-
ated quadratic form g is nonnegative one has |b(x,y)|> < g(x)¢(y) forall x,y € X.

12. Deduce from the Cauchy—Schwarz inequality that if ¢ is the quadratic form
associated with a symmetric, continuous, linear map A : X — X* and if ¢q is
nonnegative (then A is called positive semidefinite), then g~'(0) = N(A), the kernel
of A.
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13. Let A : X — X* be a positive definite symmetric continuous linear map in the

sense that A is an isomorphism and is positive semidefinite. Show that there is some

positive constant o such that (Ax, x) > o||x||* for all x € X. [Hint: Let ¢ := HA’1 Hil,

Given x € X and r € (0,1), pick y € Bx such that (Ax,y) > rc|x| and use the
Cauchy—Schwarz inequality to deduce that r2¢? ||x||* < ||A|| (Ax,x); conclude that
one can take o = ¢2[|A| "]

14. Prove the Lax—Milgram theorem: if a continuous bilinear form » on a Banach
space X is such that for some o > 0 one has b(x,x) > o ||x||* for all x € X, then
the associated linear map A : X — X* is an isomorphism. Observe that in fact X is a
Hilbert space for an equivalent norm.

15. Given a positive semidefinite symmetric map A : X — X*, show that there is
a unique positive semidefinite symmetric map B : X — X* such that Bo B = A and
AoB=BoA.Itis called the square root of A. [Hint: Use a power series expansion
or spectral theory.]

16. Using an orthonormal base (e,),>0 of a separable Hilbert space, show that the
quadratic form x — g(x) := ||x||? is not continuous for the weak topology. [Hint:
Check that (e,),>0 — 0 for the weak topology.]

17. Opial’s inequality. Let (x,) be a sequence of a Hilbert space that weakly
converges to x. Show that liminf,, |[x, — w||?> > liminf, ||x, — x||* + [|w — x||* for all
weX.

18. Show that a topological linear space is a regular space when it is Hausdorff.

1.1.4 Semicontinuity of Functions and Existence Results

A large part of nonsmooth analysis differs from traditional analysis in that it is a
unilateral analysis, or in other words, a one-sided analysis. The fact that it often
arises from minimization problems explains this viewpoint: for such problems,
points at which the maximum of the objective function is attained are not of interest.
In order to deal with such problems, one has to use a one-sided counterpart to
continuity: for several questions, a continuity assumption would not be realistic,
while a lower semicontinuity hypothesis can be satisfied. Moreover, in several
situations, one is interested in having no abrupt decrease of the values of the
function, whereas a sudden increase is not an embarrassment (think about your
income ...). Thus, a notion of one-sided continuity is in order. A precise definition
is as follows.

Definition 1.14. A function f : X — R :=RU{—oco, +-00} on a topological space X
is said to be lower semicontinuous at some ¥ € X if for every real number r < f(X)
there exists some member V of the family .4 (%) of neighborhoods of X such that
r<f(v)forallveV.
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The function f is said to be lower semicontinuous on some subset S of X if f is
lower semicontinuous at each point of S.

The function f is said to be outward continuous at x whenever —f is lower
semicontinuous at X.

We denote by .Z(X) the set of lower semicontinuous functions on X that are
proper, i.e., with values in R U {4} and taking at least one finite value.

We observe that f is automatically lower semicontinuous at X when f(X) = —oo;
when f(X) = +-oo the lower semicontinuity of f means that the values of f remain
as large as required, provided one stays in some small neighborhood of X. When
Jf(x) is finite, the definition amounts to assigning to each £ > 0 a neighborhood V.
of X such that f(v) > f(¥) — € for all v € V. Thus, lower semicontinuity allows
sudden upward changes of the value of f but excludes sudden downward changes.
Obviously, f is continuous at X iff it is both lower semicontinuous and outward
continuous at X.

Example. The indicator function 14 of a subset A of X, defined by 14(x) = 0 for
X €A, 14(x) = oo for x € X \ A, is lower semicontinuous iff A is closed, as is easily
seen. Such a function is of great use in optimization theory and nonsmooth analysis.

Example. The characteristic function )4 or 14 of A C X, defined by y4(x) = 1 for
x €A, xa(x) =0forx € X \A, is lower semicontinuous iff A is open. Such a function,
of crucial importance in integration theory, is seldom used in optimization.

Example: The length function. Given a metric space (M,d), let X := C(T,M)
be the space of continuous maps from 7 := [0, 1] to M. Given a finite subdivision
o:={th=0<<--<t,=1}of T, let us set for x € X,

n

lo(x) := Y d(x(ti-1),x(t;)),

i=1

and let £(x) be the supremum of /5 (x) as ¢ varies in the set of finite subdivisions
of T. The properties devised below yield that ¢ is lower semicontinuous when X
is endowed with the topology of pointwise convergence (and a fortiori, when X is
endowed with the metric of uniform convergence). However, ¢ is not continuous:
one can increase ¢ by following a nearby curve that makes many small changes
(a fact that every dog knows when tied with a leash). Details are given in Exercise 3
below.
The following characterizations are global ones.

Proposition 1.15. For a function f : X — R, the following assertions are equiva-
lent:

(a) f is lower semicontinuous,
(b) The epigraph E :=Ey:={(x,r) e X xR:r> f(x)} of f is closed;
(c) Forall r € R the sublevel set S(r) := S¢(r) :={x € X : f(x) <r} is closed.
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Proof. (a)=-(b) It suffices to prove that (X xR)\ E is open when f is lower
semicontinuous. Given (X,7) € (X xR) \ E, i.e., such that 7 < f(x), for every
r € (7, f(¥)) one can find a neighborhood V of ¥ such that r < f(v) forall ve V.
Then V X (—oo,7) is a neighborhood of (¥,7) in X x R that does not meet E. Hence
(X xR)\ E is open.

(b)=(c) Since for all » € R one has S(r) x {r} = EN(X x {r}), S(r) is closed
when E is closed.

(c)=(a) Given X € X and r € R such that » < f(¥), one has ¥ € X \ S(r), which
is open, and for all v € V := X \ S(r) one has r < f(v). O

The notion of lower semicontinuity is intimately tied to the concept of lower
limit (denoted by liminf), which is a one-sided concept of limit that can be used
even when there is no limit. In the following definition we suppose X is a subspace
of a larger space W, w € cl(X), a situation that will be encountered later, f.i., when
X =P:=(0,00), W=R,and w=0or when X =N, W =R.,, and w = 0.

Definition 1.16. Given a topological space W, a subspace X of W, and a point
w € cl(X), the lower limit of a function f : X — R at w is the extended real number

liminf = inf .
) = S it )

Here, as usual, ./"(w) denotes the family of neighborhoods of w in W.

Setting my :=inf f(V N X), the supremum over V € .4 (w) of the family (my )y
can also be considered the limit of the net (my )y. That explains the terminology.
One can show that supy, my is also the least cluster point of f(x) as x — w in X.
When W is metrizable, one can replace the family ./ (w) by the family of balls
centered at w, so that liminf, ,,, f(x) = sup,om,, with m, := inf f(B(w,r) N X),
is the limit of a sequence. On the other hand, the lower limit of a net (r;);c; of
real numbers is a special case of the preceding definition, taking w :=cc and W :=
TU {eo} with the topology described above.

Exercise. Deduce from what precedes that liminf,_,,, f(x) is the least of the limits
of the convergent nets (f(x;));es, where (x;);es is a net in X converging to w.

Let us give some useful calculus rules (with the convention Or = 0 for all » € R).

Lemma 1.17. For f:X — R, r € Ry, one has liminf, _,,, rf(x) = rliminf,_,,, f(x).
If f,g: X — R are such that {liminf,_,,, f(x),liminf,_,,, g(x)} # {—oo,+oo}, then
liminf, ., (f + g)(x) > liminf,_,, f(x) 4 liminf,_,, g(x).

Proof. The first assertion being immediate, let us establish the second one. Let us
set f(w) := liminf,_,,, f(x) and g(w) := liminf,_,,, g(x). If f(w) = —oo, orif g(w) =
—oo, the result is obvious. Otherwise, given r < f(w), s < g(w), we can find U,V €
A (w) such that inf f(U) > r, infg(V) > s, whence inf(f +g)(UNV) > r+s. It
follows that liminf,_,, (f + g)(x) > r+s. O

Lower semicontinuity can be characterized with the notion of lower limit.
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Lemma 1.18. A function f : X — R on a topological space X is lower semicontin-
uous at some w € X if and only if one has f(w) < liminfy_,,, f(x).

Proof. Here W = X. Clearly, when f is lower semicontinuous at w, one has f(w) <
liminf,_,,, f(x). Conversely, when this inequality holds, for every r < f(w), by the
definition of the supremum over .4"(w), one can find V € .4#"(w) such that r <
inf,cy f(v), so that f is lower semicontinuous at w. O

One can also use nets for such a characterization.

Lemma 1.19. A function f : X — R on a topological space X is lower semicontin-
uous at some X € X if and only if for every net (x;)ics in X converging to X one has
f(X) < liminf,-gf(x,').

When X has a countable base of neighborhoods, one can replace nets by
sequences in that characterization.

Proof. The condition is necessary: if f is lower semicontinuous at X and if a net
(xi)ier in X converges to X, then for all » < f(X) there exists some V € .4(X) such
that f(v) > r for all v € V and there exists some & € I such that x; € V for i > h, so
that inf;>, f(x;) > r, whence liminfic; f(x;) > r.

Conversely, suppose f is not lower semicontinuous at X and let (V;);c; be a base
of neighborhoods of X: there exists some r < f(X) such that for every i € I there
exists some x; € V; such that f(x;) < r. Ordering I by j > i if V; CV;, we get a net
(xi)ier that converges to X and is such that liminfie; f(x;) < r. The second assertion
follows from the fact that when X has a countable base of neighborhoods, one can
take a decreasing sequence of neighborhoods for a base. O

The family of lower semicontinuous functions enjoys stability properties.

Proposition 1.20. If (f;)ics is a family of functions that are lower semicontinuous
atx, then the function f := sup,, f; is lower semicontinuous at X.

For every r € R and f, g that are lower semicontinuous at X, the functions
inf(f,g) and rf are lower semicontinuous at X; f + g is lower semicontinuous
provided {f(),8(x)} # {—o°, +}.

If f and g are nonnegative and lower semicontinuous at X, so is fg.

If f : X — R is lower semicontinuous at X and if g : R — R is nondecreasing and
lower semicontinuous at f(X), then go f is lower semicontinuous at .

One may observe that in the first assertion one cannot replace lower semiconti-
nuity by continuity, as shown by the above example of arc length.

Proof. Letr € R, r < f(X). There exists some j € I such that r < fj(X); hence one
can find some V € .4 (X) such that r < fj(v) < f(v) for all v € V. The proofs of the
other assertions are also straightforward or follow from Lemma 1.18. (]

Proposition 1.21. For every function f : X — R on a topological space X, the
family of lower semicontinuous functions majorized by f has a greatest element f
called the lower semicontinuous hull of f. Its epigraph is the closure of the epigraph
of f. The function f is given by
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f(x) =liminff(u) = sup inf f(u).
U—x UeN (x) ucl

Proof. The first assertion is a direct consequence of Proposition 1.20. The second
one easily stems from the fact that the closure of the epigraph of f is the epigraph
of a function. The proof of the explicit expression of f is left as an exercise. O

Results giving lower semicontinuity of the infimum of a family of functions
require more exacting assumptions. In the next statements we change the notation,
since in many applications, X is changed into a space of parameters W.

Proposition 1.22. Let W, X be topological spaces, let w € W, and let f: W X
X — R be a function that is lower semicontinuous at (w,X) for every X € X. If
the following compactness assumption is satisfied, then the performance function
p: W — R given by p(w) := infycx f(w,x) is lower semicontinuous at w:

(C) for every net (wj)icr — W there exist a subnet (wj)jej, a convergent net
(xj)jes in X, and (&) jes — Oy such that f(wj,x;) < p(w;)+¢;j forall j € J.

Proof. Given a net (w;);jc; — W, one can find a subnet (w;) je; such that (p(w;)) jes
converges to liminfic; p(w;) and (taking a further subnet if necessary) such that for
some (g;) — 04 and some convergent net (x;) e one has f(wj,x;) < p(w;) +¢;
for all j € J. Then, if ¥ is the limit of (.xj')jej, one has

p() < f(5,%) < liminf f(w;,x;) < liminf (p(w;) + &;) = liminfp(w;).
JjeJ jeJ iel

These relations hold for every such net (w;);e;, so one has p(w) < liminf, . p(w).
O

Corollary 1.23. Let W and X be topological spaces, X being compact, and let f
W x X = Re := RU {0} be lower semicontinuous at all points of {w} x X. Then
the performance function p defined as above is lower semicontinuous at w.

When f is lower semicontinuous on W x X, a simpler proof can be given using
the Weierstrass theorem below.

Proof. Condition (C) is clearly satisfied when X is compact, since for every net
(wi)ier — W and for every sequence (04,) — 0 one can take H := 1 x N, wy, := w;,
&, := oy, for h := (i,n) and pick x, € X satisfying f(wy,x;) < p(wy)+ €&, and take a
subnet (x;) jes of (x5)nep that convergesin X. O

The following result is the main existence result in optimization theory.

Theorem 1.24 (Weierstrass). Let f: X — R be a lower semicontinuous function
on a compact topological space X. Then the set M :={w e X : f(w) < f(x)Vxe X}
of minimizers of f is nonempty.

Proof. We may suppose m :=inf f(X) < +eo, for otherwise, f is constant with value
+oo. Setting S¢(r) := {x € X : f(x) < r}, the family {S¢(r) : r > m} is formed of
nonempty closed subsets, and every finite subfamily has a nonempty intersection:
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Mi<i<kSf(ri) = Sg(rj), where r; := minj<;< r;. Therefore its intersection, which
clearly coincides with M, is nonempty. (]

The compactness assumption in the preceding theorem can be relaxed by using a
notion of coercivity. A function f : X — R on a metric space X is said to be coercive
if for all € R the sublevel set S¢(r) := f~!((—o0,7]) is bounded, or equivalently,
if f(x) — 40 as d(x,x9) — +oo (xp being an arbitrary point of X). This notion is
essentially used in the case that X is a normed space and f(x) — oo as ||x|| — -oo.
We will say that f is inf-compact if for all r € R the sublevel set S¢(r) is compact.
When the closed balls of X are compact, this property coincides with coercivity. For
such a function, the existence of minimizers is ensured by a well-known result and
lower semicontinuity of f:

Corollary 1.25. Let f: X — R. be an inf-compact function on a topological space
X. Then f attains its minimum.

In particular, if (X,d) is a metric space whose closed balls are compact
for a topology weaker than the topology associated with d and if [ is lower
semicontinuous for this topology and coercive, then f attains its minimum.

Proof. The result being obvious when f takes the value +co only, let r € R be
such that S¢(r) := f~1((—oo,]) is nonempty. By assumption, S;(r) is compact. By
Theorem 1.24, f attains its infimum on S¢(r). Since inf f(X) = inf f(S¢(r)), every
minimizer of the restriction f | S¢(r) of f is also a minimizer of f. O

Given a topological space X, one may try to weaken its topology in order to
enlarge the family of compact subsets. Then a continuous function on X may not
remain continuous. There are interesting cases, for instance making use of convexity
assumptions, for which the function still remains lower semicontinuous, so that the
preceding generalization of the classical existence of a minimizer is of interest.

Exercises

1. Using the relation E = ",; E;, where E; is the epigraph of a function f; and E is
the epigraph of f := sup,; fi, show that f is lower semicontinuous on X when each
fi is lower semicontinuous on X. Use a similar argument with sublevel sets.

2. Suppose X is a metric space. Show that f is lower semicontinuous at X iff f
is sequentially lower semicontinuous, i.e., if for every sequence (x,) — X one has
f(x) <liminf, f(x,).

3. Let (M,d) be a metric space, let T := [0, 1], and let X := C(T,M) be the set of
continuous maps from 7 to M. Given some x € X and some element s of the set S
of nondecreasing sequences s := (s, ),>0 satisfying so = 0, s, = 1 for n large, let

és(x) = 2 d(-x(sl‘l)7‘x(sﬂ+1))

n>0
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(observe that the preceding sum contains only a finite number of nonzero terms).
Define the length of a curve x € X by {(x) := sup,cgfs(x). Show that s : X — R is
continuous when X is endowed with the metric of uniform convergence (and even
when X is provided with the topology of pointwise convergence). Conclude that the
length ¢ is a lower semicontinuous function on X.

Show that £ is not continuous by taking M := R?, X given by ¥(¢) := (¢,0), and
by showing that there is some x,, € X such that d(x,,%) — 0 and £(x,) > v/2. [Hint:
For n > 0 define x, by x,(f) =1 — 2 for 7 € [, 2] and x,(t) = —¢ + &L for
re (B A2 ke N k<n—1]

4. Let (M,d) be a metric space whose closed balls are compact. Suppose X is
arcwise connected. Show that every pair of points xgp, x; in X can be joined by a
curve with least length (a so-called geodesic). Identify such a curve when M is R?,
the unit sphere S?~! of R, and when M is the circular cylinder C := S' x [0, 4] in
R3. Such curves prompted the development of differential geometry.

5. Show that the infimum of an infinite family of lower semicontinuous functions
is not necessarily lower semicontinuous. [Hint: Every function f on a Hausdorff
topological space X is the infimum of the family (f,)sex given by f,(x) = f(a) if
X = a, +oo otherwise.]

6. Let X be a closed subset of R? and let f : X — R be pseudo-coercive in the sense
that there exists some xo € X such that f(xo) < liminfjy e ex f(x) and lower
semicontinuous. Show that f attains its infimum.

7. Let X be a closed subset of RY and let f : X — R. Assume that f is finitely
minimizable in the sense that there exists » € Ry such that for every t > m :=
inf f(X), there exists some x € X satisfying ||x|| < r, f(x) < ¢. Show that every
pseudo-coercive function is finitely minimizable and that every finitely minimizable
lower semicontinuous function on X attains its infimum at some point of X N B[0, r],
where r is the radius of essential minimization, i.e., the infimum of the real numbers
r for which the above definition is satisfied.

8. Prove the Weierstrass theorem in the case that X is a compact metric space by
using a minimizing sequence of f, i.e., a sequence (x,) of X such that (f(x,)) —

inf £(X).

9. Let f: X — R. be a lower semicontinuous function on a topological space X
and let A be a nonempty subset of X whose closure is denoted by cl A. Show that
sup f(A) = sup f(cl A). Can one replace sup by inf?

10. Define a family of continuous functions whose supremum is not continuous.

11. Show that every lower semicontinuous function f on [0,1] (or on a second
countable metric space X) is the supremum of the family of continuous functions

g<f.
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12. Prove Corollary 1.23 using open subsets.

13. Show that among all cylindrical barrels B := B[0,r] x [0,4] in R? with a given
area s there is one with greatest volume.

1.1.5 Baire Spaces and the Uniform Boundedness Theorem

In this subsection we review some facts from functional analysis that will be useful
for our purposes. We will say that a subset G of some topological space T is generic
if it contains the intersection of a countable family of open subsets of 7' (a so-called
s set) that are dense in T'; other terminologies are that G is residual or that the
complement of G is meager or a set of first category. It is convenient to say that a
property involving a point is generic if it holds on a generic subset. The main feature
of this notion is that the intersection of a finite (or countable) family of generic
subsets is still generic, a property that does not hold for dense subsets (consider the
set of rational numbers and the set of irrational numbers in R). The importance of
this concept lies in the following result, valid in a large class of topological spaces
called the class of Baire spaces (it also includes the class of locally compact spaces).

Lemma 1.26 (Baire’s theorem). In a complete metric space T, every generic
subset is dense. Moreover, if T is the union of a countable family of closed subsets,
then one of them has a nonempty interior.

Proof. Let us show that every subset G of T containing the intersection (), 7, of a
countable family of open dense subsets T, of T is dense. Let (s,,) be a sequence of
positive numbers with limit 0. Given a nonempty open subset U of T, the set 7, N U
is nonempty and open; in particular, 7o N U contains some closed ball Blxy, o] with
ro € (0,s0]. Assume by induction that we have constructed open balls B(xy, i) with
rk < Sy Blxg,ri] C B(xg_1,rx—1) NT; for k =1,...,n. Since B(x,,r,) meets T,
we can find a closed ball Blx,1,7n+1] C Th1 N B(xXy, 1) with 7,11 < 5,11, The
sequence (x,,) obtained in this way is a Cauchy sequence (since d (x4, X,) < s, for
all n, p). Its limit belongs to B[xy,, | C T,y for each m and in particular to B[x, ro] C
U and henceto (N, 7,NU C GNU: G is dense.

Now suppose T = |J, F,,, where each F, is closed. Let T, := T \ Fy,; then T, is
open and if F, has an empty interior then 7}, is dense. If this happens for all n € N,
then ), 7, is dense, an impossibility since (), 7, = &. Thus, at least one F;, has a
nonempty interior. (]

Theorem 1.27 (Banach—Steinhaus or uniform boundedness theorem). Ler X, Y
be normed spaces, X being complete, and let F be a subset of the space L(X,Y) of
continuous linear maps from X to Y. If for all x € X, the set F(x) :={f(x): f € F}
is bounded in Y, then F is bounded in L(X,Y) for the usual norm.
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Proof. Denoting by By unit ball of Y, for n € N define the closed set

X,:={xeX :VfeF [|f(xll <n}= ()" (nBy).

fer

By assumption, X is the union of the family (X,,). By Baire’s theorem above, there
is some k € N such that X; has a nonempty interior. If a € intX;, we also have
—a € intXy, since X}, is symmetric with respect to 0. It follows that 0 € intXj. Thus,
if > 0 is such that rBx C X;, we have ||f|| < r 'k forall f € F. O

Corollary 1.28. A weak™ bounded subset of the dual X* of a Banach space X
is bounded. A weakly bounded subset of X is bounded. In particular, a weak*
convergent sequence of X* is bounded.

Here a subset S of X (resp. X™) is said to be weakly (resp. weak™) bounded if for
all f € X* (resp. x € X) the set { f(x) : x € S} (resp. {s*(x) : s* € S}) is bounded.

Proof. The first assertion is the special case of the theorem correspondingto Y :=R.
The second one stems from the fact that the embedding of X into X** is isometric,
as a consequence of the Hahn—Banach theorem, which we will prove below. O

Exercises

1. Show that a locally compact topological space X (i.e., a space X such that for
every x € X and every U € .4 (x) there exists some V € .4'(x) that is compact and
contained in U) satisfies the Baire property that every generic subset is dense.

2. Show that the evaluation map e : X x X* — R given by e(x,x*) := x*(x) is
sequentially continuous when X is endowed with the strong topology and X* is
provided with the weak™ topology, but that it is never continuous when X is infinite-
dimensional. [Hint: If there are neighborhoods U, V* of the origins in X strong and
X* weak™ respectively such that e(x,x*) < 1 for all (x,x*) € U x V*, a contradiction
is obtained to the fact that V* contains an infinite-dimensional linear subspace.]

3. Let X, Y be normed spaces, X being complete, and let F be a subset of L(X,Y)
such that for all x € X and all y* € Y* the set FT(y*)(x) := {(y*,f(x)) : fE€ F}is
bounded in R. Show that F is bounded.

4. LetX :=C(T) be the space of continuous functions on 7 := [0, 1], endowed with
the supremum norm ||-|,, given by || f||.. := sup,cr | f(¢)|. For n € N\ {0}, let
Fo={feX:3rel0,1-1/n],¥se[0,1/n] |f(r+s)— f(r)] <ns}.

Show that F,, is closed in X and that G, := X \ F, is dense in X. Conclude that
the set of bounded continuous functions that are nowhere differentiable on T is a
generic subset of X. Such a conclusion reinforces the famous counterexample due to
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Weierstrass of a continuous function that is nowhere differentiable. [Hint: Given f €
X and € > 0, in order to find some g € G, NB(f, €), pick a polynomial p € B(f,&/2)
and a piecewise affine function g such that ||g||.. < £/2 and |¢'(t)| > n+ ||p'||.. for
all but finitely many ¢ € [0,1] and set g := p+q.]

1.2 Set-Valued Mappings

Although poets keep celebrating the uniqueness of love, uniqueness is seldom met in
human activities and real-world problems. For optimization problems, uniqueness
seems to be far less important than stability of solutions. Two precise meanings
can be given to the latter notion. The first means that given a solution X, for all
parameters w close enough to w one can find a solution x,, with limit X as w
converges to w (persistence of solutions). The second means that if a sequence (or
net) (x,) of solutions corresponding to a sequence of parameters (wy,) — we. has a
limit x.., then this limit x.. belongs to the set of solutions for the limit parameter
We (stability of solutions). Both concepts are important and useful in practice. In
particular, in dealing with the parameterized minimization problem

(Z,,) minimize f(w,-) on F(w) C X,

where W and X are topological spaces, f is an extended real-valued function on
W xX,and F : W — Z(X), the set of subsets of X, the two continuity properties
can be applied to the feasible set F(w) or to the solution set

S(w):={xe F(w): f(w,x) =inff(w,F(w))}.

Another important example of the role of set-valued maps is provided by optimal
control theory. There, a cost criterion is minimized over the set of solutions to an
equation involving a parameter or control u at the disposal of the user (such as
consumption of fuel or the like). In one of its simplest forms, the system is governed
by a differential equation

x(t) = f(t,x(t),u(t)), teT,

where T is some interval of Rand f : T X E x U — E, E is a Banach space, U is a
set, and u(-) is a map from T to U chosen in a certain class % . It is often convenient
to associate to such an equation the differential inclusion

x(t) € F(t,x(t)),

where F (t,e) := {f(¢,e,u) : u € U} represents the set of potential velocities.
Mappings with sets as values appear in many practical problems such as image

compression, image recovery, and evolution of oil reservoirs; they also appear in a

number of mathematical problems, even if this is not always clearly recognized. For
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instance, they occur with every equivalence relation and with every order relation;
they also appear as soon as one considers inverse images by a given mapping g: X —
Y, since F(y) := g !(y) := {x € X : g(x) =y} defines a set-valued map F = g~!
from Y into X. Such set-valued mappings are often called multifunctions; other
terms in use are multimappings, multis, correspondences, relations. We will use the
terminology “multimaps,” since it is concise and suggestive.

In this section, we present some generalities about such maps. Then we define
limits of sets and we relate this notion to continuity properties for multimaps.

1.2.1 Generalities About Sets and Correspondences

A formal definition is in order.

Definition 1.29. A multimap (or correspondence, or set-valued mapping) F : X =
Y from a set X into another set ¥ is a map from X into the set Z(Y) of subsets of Y
(also called the power set of ¥ and often denoted by 27).

The notation F' : X =2 Y suggests that F' can be seen almost as a mapping from
X into Y, the difference being that the image of a point of X is a subset of Y rather
than a singleton. In this way, maps can be considered as special multimaps, amap f :
X — Y being identified with the multimap F given by F(x) = { f(x)}. Any multimap
F : X =Y induces a mapping from & (X) into & (Y) (still denoted by F) given by

F(A):= ] F(a),

acA

so that F({a}) = F(a).

Multimaps can be composed: given F' : X =Y, G:Y = Z, the composition of F
and G is the multimap Go F : X =% Z given by

(GoF)(x) := G(F(x)),
where G(B), for B := F(x), is defined as above. Then one has the associativity rule
Ho(GoF)=(HoG)oF.
The inverse F~' : ¥ = X of a multimap F : X = Y is the multimap given by
Fly):={xeX:ycF(x)}, yev.

This definition is compatible with the familiar use of inverse images for maps. Let

us note that here we do not leave the realm of multimaps, whereas the inverse of a
map is in general a multimap, not a map (and this fact is a source of many mistakes



26 1 Metric and Topological Tools

made by beginners in mathematics). Let us also observe that the extension of F~!
to Z(Y) is given by

F'(B)={xeX:BNF(x)#a}.
In particular, F~'(Y) is the domain dom F or D(F) of F:
domF :=D(F):={xeX:F(x) #&}.

It is also the range or image R(F~') := ImF~! := F~1(Y) of F~'. Conversely,
dom F~! is the image of F: the roles of F and F~! are fully symmetric. It is easy to
check that when F : X = Y, G:Y =2 Z are given multimaps, and when C is a subset
of Z, one has

(GoF)"'(C)=F (G (C)).

For all subsets A, A" of X (resp. B,B’ of Y) one has F(AUA’") = F(A)UF(A’) and
F~Y(BUB') = F~'(B)UF~!(B'). Let us observe that in general, one has

FYBnB)#F ' (B)nF (B, (1.1)

in contrast to what occurs for maps. Note that since F = (F~!)~!, F~! may be an
arbitrary multimap from Y to X, and in fact, for a multimap M : Y = X one has
M(ANB) # M(A)NM(B); taking F = M~', so that F~! = M, we obtain (1.1).

It is often convenient to associate to a multimap F : X = Y its graph

G(F):=gph(F) :={(x,y) eX XY :y€eF(x)}.

This subset of X x Y characterizes F, since F(x) = {y €Y : (x,y) € G(F)}. Con-
versely, to a given subset G of X X Y, one can associate a multimap F : X =Y by

F(x)={yeY:(x,y) €G}, xeX,

so that G is the graph of F. Moreover, when G is the graph G(M) of some
multimap M, one gets F = M via this reverse process. Thus, there is a one-to-
one correspondence between subsets of X x Y and multimaps from X into Y.
This correspondence is simpler than the correspondence between maps and their
graphs, since in the latter correspondence one has to consider only subsets G whose
vertical slices GN ({x} x Y) (for x € X) are singletons. In view of this one-to-one
correspondence between a multimap and its graph, it is often convenient to identify
a multimap with its graph and to say that a multimap has a property &2 if its graph
has this property (such as closedness or convexity). This viewpoint is often fruitful
and without any important risk of confusion; however, when X and Y are endowed
with some operation *, one has to be aware that F * F’ usually denotes the multimap
x+— F(x)* F’'(x) and not the multimap whose graph is G(F) « G(F') (see Exercise
5). Moreover, one has to be careful with the order of the terms in the product X x Y,
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since it determines the direction of the multimap. In fact, the graph G(F~!) of F~!
is the subset of Y x X that is symmetric to the graph G(F) of F:

G(F™') =G(F)"":={(»x) : (x,y) € G(F)}.

When X is a product X = X; x X, one has to be precise when one associates to
a subset G of X x Y a multimap, since a partial multimap also can be defined in
this way.

In order to get some practice, let us deal with the following “sum principle” (such
an expression is a bit pompous for such a simple fact, but it is convenient).

Proposition 1.30. [26] Let X and Y be two linear spaces (or additive groups), let
c,dinY, andlet A,B: X =Y be two multimaps. Then the equations

c+deA(x)+B(x), (1.2)
0cA yt+e)—B (d—y), (1.3)
ye(AoB HYd—y)—c (1.4)

are equivalent in the following sense: x € X is a solution to (1.2) if and only if
(A(x) —c)N(d — B(x)) is nonempty and every y in this intersection is a solution to
(1.3) and (1.4); conversely, y is a solution to (1.3) or (1.4) iff A~ (y +¢) "B~ (d — )
is nonempty and any x in this intersection is a solution to (1.2).

Proof. Clearly, x is a solution to (1.2) iff there exists y € A(x) — ¢ such thatd —y €
B(x). This amounts to saying that x € A~ (y+¢)NB~!(d —y) or that (1.3) holds. In
other words, y+c¢ € A(B~!(d —y)), i.e., (1.4) holds. O

Although the preceding principle and the one in the exercises below are
extremely simple, they give rise to interesting interpretations of various results.

Exercises

1. (a) Give an example to show that for a multimap F : X 2 Y, the relations
FloF=I, FoF '=1I,

do not hold in general; here and elsewhere Is denotes the identity map on a set S.
(b) Show that Iy C F~! o F (the inclusion being the inclusion of graphs or images)
iff D(F) = X. Also show that Iy C FoF 1 iff R(F) =Y.

(¢) Given multimaps F : X =Y, G:Y 2 Z and H := GoF, give a sufficient
condition in order to have F C G~! o H. Show that this inclusion may not hold.
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2. Give an example proving relation (1.1).

3. Given multimaps F : X =Y, G:Y =% Z, show that
gph(GoF) = (Ix x G)(gphF) = (F x Iz) ' (gphG).
4. Given a multimap F : X =2 Y and a subset B of Y one sometimes sets

FT(B):={x€X:F(x) CB}.

(a) Observe that if F is a map, then F*(B) = F~!(B) for every subset B of Y. Show
conversely that if this relation holds for every subset B of Y, then F is single-valued.
(b) With the preceding notation, show that

Fr(Y\B)=X\F '(B), F '(Y\B)=X\F'(B).

5. When the set Y is provided with a binary operation L (say a sum), one can define
a pointwise operation on the family of multimaps from X into Y by setting

(FLF")(x) := F(x) LF'(x).

If X is also provided with a binary operation L, one must note that the multimap
F_LF’ is not the multimap associated with G(F)LG(F’), where the operation L
on X x Y is defined componentwise by (x,y) L(x',y') = (xLx/,yLy") (and induces
an operation on the set (X x Y) of subsets of X x Y, as usual). Give examples
showing that this operation on graphs does not correspond to the operation on
multimaps via their values.

6. In Proposition 1.30, the roles of A and B (resp. ¢ and d) are symmetric. One
can also deduce nonsymmetric statements from that one. Let X and Y be two linear
spaces, letc € Y,and let A,B : X = Y be two multimaps. Then if Bis the multimap
given by B(x) := —B(—x), show that the equations

c€A(X)+B(x), (1.5)
0cA ' (y+¢)+(B)(y), (1.6)
Y€ (AoB ) (=y)—c (1.7)

are equivalent in the following sense: x is a solution to (1.5) iff (A(x) —c) N (—B(x))
is nonempty and any y in this intersection is a solution to (1.6) and (1.7); conversely,
y is a solution to (1.6) or (1.7) iff A~! (y + ¢) N B~!(—y) is nonempty and every x in
this intersection is a solution to (1.5).

7. Prove the composition principle of [868].
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1.2.2 Continuity Properties of Multimaps

Let F : T = X be a multimap between two topological spaces. There are at least
two reasons why the value F(r) of the multimap at a point 7 close to a given point
fo € T may be far from its value F (ty) at fo: either F(¢) is much larger than F (1), or
else it is much smaller. Continuity of F means that these two events do not happen
when 7 is close enough to 7 and that F(r) is not too far from F(zy). It is convenient
to study separately these two regular behaviors. We start with a property ensuring
that the values do not shrink abruptly.

Definition 1.31. A multimap F : T =2 X between two topological spaces is said to
be inward continuous (or inner continuous or lower semicontinuous) at some point
fo of T if for every open subset V of X such that F(fy) NV # & there exists some
neighborhood U of #p in T such that F(t) NV # @ forallt € U.

Example (e) below and a connection with limits of families of sets given in the
next subsection explain the classical terminology “lower semicontinuity.” However,
since there is no order on X, we prefer the more intuitive terminology “inward
continuity.”

It is sometimes useful to deal with a pointwise version of the preceding concept:
one says that F' is inward continuous or lower semicontinuous at some point (ty,xo)
of the graph of F if for every neighborhood V of x there exists some neighborhood
U of 1y in T such that F (1) NV # @ forall r € U. Thus, F is inward continuous at #o
if and only if for all xo € F (1) the multimap F is inward continuous at (fo,xo). Let
us note that F is inward continuous at (9, xo) if and only if F~! is open at (xo,10) in
the sense that for every neighborhood V of xo, F~!(V) is a neighborhood of #. The
multimap F is inward continuous on some subset S of T if it is inward continuous
atall s € S; for S = T, we just write that F is inward continuous.

Examples. (a) The multimap D : R = R? given by D(¢) := {(rcost,rsint) : r €
R, } is inward continuous at every point of R.

(b) The multimap G : R = R given by G(0) := {0}, G(¢) := [-1,1] forr € R\ {0}
is everywhere inward continuous.

(c) The Heaviside multimap H : R = R given by H(0) := [—1,1], H(t) := |t[¢ !
forr € R\ {0} is not inward continuous at 0.

(d) Let S be a subset of the set C(7,X) of continuous maps from 7 to X. Then
F:T = X givenby F(r) := {f(¢) : f € S} is inward continuous. In particular,
if U is an arbitrary set, if g: T x U — X is continuous in its first variable, then
F(-) :=g(-,U) is inward continuous.

(e) Given f: T — R, its hypograph multimap Hy : T = R given by Hf(t) :=
(—eo, f(¢)] is inward continuous at 7y € T iff f is lower semicontinuous at7y. O

The proofs of the following properties are left as exercises.

Lemma 1.32. (a) IfF is the multimap t = {f(t)} associated with amap f : T —
X, F is inward continuous at tq if and only if f is continuous at t.
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(b) F: T = X is inward continuous if and only if for every open subset V of X, the
set F' (V) isopeninT.

(¢) If F: T = X is inward continuous at (ty,xo), if Y is another topological space,
and if G : X =Y is inward continuous at (xo,yo), then H:=GoF : T =Y is
inward continuous at (ty,yo).

(d) If F:S=Xand G:T ==Y are two multimaps that are inward continuous at s,
fo respectively, then their product H, given by H (s,t) := F(s) X G(t), is inward
continuous at (so, ).

(e) If, in the preceding assertion, S =T and sy = ty, the multimap (F,G) : T =
X x Y given by (F,G)(t) := F(t) x G(t) is inward continuous at &.

(f) If F and G are two multimaps from T to X that are inward continuous at ty, then
their union H given by H(t) := F(t) U G(¢) is inward continuous at t.

The example of F,G : Ry = R given by F(¢) := [t,2t], G(¢) := [-2¢t,—1] shows
that the intersection of two inward continuous multimaps may not be inward
continuous.

Now we consider the other continuity property one may expect. It prevents the
values to expand abruptly.

Definition 1.33. A multimap F : T =2 X between two topological spaces is said to
be Outward continuity or, more classically, upper semicontinuous at some point
1o of T if for every open subset V of X such that F(ty) C V there exists some
neighborhood U of #y in T such that F(t) C V for all + € U. If F is outward
continuous at each point s of some subset S of 7, then F is said to be outward
continuous on S.

Outward continuity is a stringent property that is seldom satisfied when the values
of the multimap are noncompact. However, its mathematical content is simple and
it occurs in some cases. The next properties are more likely to occur.

Definition 1.34. A multimap F : T =2 X between two topological spaces is said to
be compactly outward continuous at some point ty of T if for every compact subset
K of X the multimap Fx : ¢t = F(¢) N K is outward continuous at fy.

A multimap F : T =2 X between two topological spaces is said to be closed at
some point #y of 7 if for all x € X \ F(zy) there exist neighborhoods U of #y, V of x
suchthat F(1)NV =@ forallr € U.

Clearly outward continuity implies compact outward continuity. In fact, F is
outward continuous (resp. compactly outward continuous) at #y if and only if for
every closed (resp. compact) subset C of X contained in X \ F (1), there exists
a neighborhood U of #y such that for all t € U, F(t) and C are disjoint. The
terminology “F is closed at 7y is justified by its rephrasing in terms of closure:
F is closed at 1y if and only if

cl(F)N({i} x X) = {to} x F(1o).
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In fact, it is easy to see that F is closed at ¢ if and only if for every x € X and nets
(ti)ier — to, (xi)icr — x, one has x € F(ty) whenever x; € F(t;) for all i € I. This
property implies that F (1) is closed in X, but is more demanding than closedness
of F(ty) in general (Exercise 2). Also, one can check that F is closed at every point
of T if and only if its graph is closed in 7' x X. In many cases, outward continuity is
more stringent than closedness.

Proposition 1.35. (a) If X is a regular (resp. Hausdorff) space, if F : T = X is
outward continuous at some pointty € T, and if F (ty) is closed (resp. compact),
then F is closed at 1.

(b) If F is closed at ty and if every open neighborhood W of F(1y) is such that
X\ W is compact, then F : T = X is outward continuous at ty. In particular, if
Jor some neighborhood U of ty the set F(U) is contained in a compact subset
Y of X, then F is closed at ty if and only if F(ty) is closed and F is outward
continuous at ty.

Proof. (a) When F(ty) is closed and X is regular, given x € X \ F () there exist
neighborhoods V of x, W of F (fy) that are disjoint (take for V a closed neighborhood
of x contained in X \ F(tp) and W := X \ V). If U € .4 (1y) is such that F(r) C W for
allt e U, we get F(t)NV = @ for all r € U. When X is just Hausdorff but F (to) is
compact, one can also find disjoint neighborhoods V, W of x and F (fy) respectively.

(b) Suppose F is closed at fy and for every open neighborhood W of F (1), X \ W
is compact. If F is not outward continuous at 7y one can find an open neighborhood
W of F(ty) and a net (;);c; — fo such that for all i € 1, F(¢;) \ W is nonempty. Since
X\ W is compact, taking x; € F(;) \ W there exists a subnet (x;)cs of (xi)ies that
converges. Its limit is in X \ W, hence in X \ F (1)), a contradiction to the closedness
of F at fy. The last assertion stems from the fact that one can replace 7" with U and
X with Y. O

Corollary 1.36. If F : T = X is closed at ty, then F is compactly outward
continuous at ty and F (ty) is closed. The converse holds when ty and the points
of X have a countable base of neighborhoods.

Proof. If F: T = X is closed at fy, then F (1) is closed, and for every compact subset
K of X the multimap Fx : ¢ = F(t) N K is closed at , hence is outward continuous
at fo by Proposition 1.35 (b).

Suppose fy and the points of X have a countable base of neighborhoods, F (1) is
closed, and F is compactly outward continuous at #. Let (Uy,) be a countable base
of neighborhoods of #y. If F is not closed at f, then there exist x € X \ F(#p) and a
countable base of neighborhoods (V;) of x such that V,, meets F(U,) for all n € N.
Lett, € U, and x,, € F(t,) NV,. Then K := {x} U{x, : n € N} is compact. Since Fk
is not closed, by Proposition 1.35 (a), it cannot be outward continuous. Thus we get
a contradiction to the assumption that F' is compactly outward continuous at fy. [

Examples. (a) The multimap D : R = R? of the preceding examples is closed at
every point of R but is nowhere outward continuous.

(b) The multimap G of these examples is not outward continuous at 0.

(c) The multimap H of these examples is everywhere outward continuous.
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(d) IfU is a compact topological space, if g : T x U — X is continuous, then F (+) :=
g(+,U) is outward continuous.

(e) Given f:T — R, its hypograph multifunction Hy : T = R is outward continuous
attg € T if and only if f is outward continuous at ;. O

Again, the easy proofs of the following properties are left as exercises.

Lemma 1.37. (a) If F is the multimap t = { f(¢)} associated with amap f : T —
X, F is outward continuous at ty if and only if f is continuous at t.

(b) F:T = X is outward continuous (resp. compactly outward continuous) if and
only if for every closed (resp. compact) subset C of X, the set F~'(C) is closed
inT.

(c) If F: T = X is outward continuous at ty, if Y is another topological space, and
if G: X 3Y is outward continuous at every xo € F (tp), thenH :== GoF : T 3 Y
is outward continuous at t.

(d) If F:S=X and G: T =Y are two multimaps that are closed at s, t
respectively, then their product H given by H(s,t) := F(s) x G(t) is closed at
(50,20)- If F (s0) and G(to) are compact, one can replace “closed” by “outward
continuous” in this assertion.

(e) If F and G are two multimaps from T to X and Y respectively that are closed
(resp. compactly outward continuous) at ty, then the multimap (F,G) given
by (F,G)(t) := F(t) x G(t) is closed (resp. compactly outward continuous)
at fy. If F(ty) and G(ty) are compact, one can replace “closed” by “outward
continuous” in this assertion.

(f) If F and G are two multimaps from T to X that are outward continuous at t,
then their union H given by H(t) := F (1) UG(t) is outward continuous at t.

The following two results are easy extensions of known properties for continuous
maps. The first one can be established by an easy covering argument. For the second
one, we recall that a topological space X is said to be connected if it cannot be split
into two nonempty disjoint open subsets.

Proposition 1.38. If T is a compact space, if X is a Hausdorff space, and if F :
T = X is outward continuous with compact values, then F(T') is compact.

Proposition 1.39. If T is a connected topological space and F : T = X has
connected values and is either inward continuous or outward continuous, then F(T')
is connected.

Let us end this subsection with the quotation of a famous and useful result.

Theorem 1.40 (Michael [703]). Let T be a topological space that is either
metrizable or compact and let F : T =2 X be an inward continuous multimap with
closed convex images in a Banach space X. Then F admits a continuous selection,
i.e., a continuous map f : T — X such that f(t) € F(t) forallt € T.
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Since the construction of f uses a partition of unity on 7', it is valid in fact when
T belongs to the class of paracompact spaces, a class encompassing both metrizable
and compact spaces.

Exercises

1. Prove the assertions of this section that are not given proofs.

2. Check that if 7y is not an isolated point of a topological space T (i.e., if #( is in
the closure of T'\ {#o}) and if C is a closed proper subset of a topological space X,
then F: T = X given by F(t9) :=C, F(t) :=X fort € T\ {to} is not closed at 1.

3. Show that F : T = X is closed at every point of 7 if and only if its graph is
closedin T x X.

4. Let (X,d) be a metric space. Show that F : T — X is inward continuous at (fy,xo)
if and only if d(xo,F(t)) — 0 as t — 1, if and only if there exists amap f: T — X
that is continuous at 7y, with f(fy) = xo and f(¢) € cl(F(z)) for  close to 1.

5. (a) Show that if F is the multimap r = {f(r)} associated withamap f: T — X,
then F is outward continuous at ¢y if and only if f is continuous at f.

(b) Check that for f: R — R given by f(0) =0, f(r) := 1/r otherwise, F is closed
at 0 but not outward continuous at 0.

6. Prove that if T is a connected topological space, and if F': T = X has connected
values and is such that for every t € T and every open subset V of X containing
F(t) the set F~!(V) is a neighborhood of ¢, then F(T) is connected. Deduce
Proposition 1.39 from that.

7. (a) Show that a multimap F : T = X from a topological space T to a metric space
X is Hausdorff outward continuous at ty € T in the sense that ey (F(1),F(tp)) :=
Supycp () d(x, F (to)) — 0 as t — to whenever F is outward continuous at fo. Provide
a counterexample to the converse.

(b) Show that F is inward continuous at ty whenever F is Hausdorff inward
continuous at to in the sense that ey (F(to),F(t)) 1= sup,cp(,) d(x,F(t)) — 0 as
t — 1.

(¢) Consider the missing implications when one assumes that F (1) is compact.

8. A multimap M : X = X* between a Banach space and its dual is called a
monotone operator if for all x, y in X and x* € M(x), y* € M(y) one has (x* —
y*,x—y) > 0. It is called maximal monotone if every monotone operator N whose
graph contains the graph of M coincides with M. Prove that a maximal monotone
operator is outward continuous from the strong topology to the weak® topology on
the interior of its domain.
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1.3 Limits of Sets and Functions

The notions of convergence for families of sets are important for their intrinsic
interest, but also because they can serve to define convergences of families of
functions that have better properties than traditional convergences.

1.3.1 Convergence of Sets

It is of common use to speak of limits of sets. For instance, in order to define a
tangent to a curve C of a Euclidean space at some point a, one takes the limit of a
secant to the curve C joining a to some point x of the curve when x — a, withx € C.
As another example, let us consider the family (E;),cp of ellipses given by

E :={(ns)eR*:tr+5°=1};

it is tempting to say that when r — 1, i.e., when the eccentricity of the ellipse E;
tends to 1, E, converges to the unit circle E; := S!. Many other examples can be
given.

It is the purpose of the present subsection to explain how the intuitive idea of
limit of a family of sets can be described in precise mathematical terms. Several
approaches to a definition of limits of families of sets are possible. One can restrict
one’s attention to sequences of subsets of a topological space X, and for most
purposes, such a framework is sufficient. In some cases, it may be useful to have
at one’s disposal a notion of convergence for nets of sets, i.e., for families (F})e;
of subsets of X indexed by a directed set /. One may also adopt the framework of
parameterized families. We choose the equivalent language of multimaps because it
is closely connected with the notions of continuity of a multimap and it fits well the
applications we have in view, in particular with generalized derivatives and tangent
sets.

Let T be a (pointed) parameter space, i.e., a subspace T of a topological space P
with which is associated a base point 0 of P in the closure cl(7') of T. We denote by
T thetrace 7 :={NNT :N € A4p(0)} on T of the family .#»(0) of neighborhoods
of 0 in P. The usual case is the case P := R, T := P, the set of positive numbers,
with 0 as base point. Another usual case is the case T = N in P := R., and +oo
is the base point; if one is interested only in limits of sequences of sets, one can
restrict one’s attention to this case. When one deals with a net (S;)cs of subsets of a
topological space X, one can set T := I and endow the set P := L. := I U {co} with
the topology defined in Sect. 1.1.2.

Given a topological space X and a multimap F : T = X, it is not always the case
that the limit of F(¢) as + — 0 (in T') exists. However one can always consider two
substitutes for the limit. They are described in the following definition.
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Definition 1.41. The limit inferior (or inner limit) of a family (F (z)),cr of subsets
of a topological space (X, @) is given by

%inTl)in%F(t) ={xeX:We(x),ISe T, VseS, F(s)NV # &}.
el )—

The limit superior (or outer limit) of the family (F(¢)),er is given by

limsup F (1) ;== {x X :VV € M5 (x), VS € T, F(S)NV £ @} = [ cl(F(S)).
t(€T)—0 N

If limsup,c7)_,o F (1) = liminf, 7)o F (#) one says that F (t) converges ast — 0 in
T and one denotes this set by lim,(c7y_,o F(¢) or lim, .o F(t).

When the inclusion ¢ € T can be implicitly assumed without great risk of
ambiguity, we omit it in the notation for these one-sided limits and write r — 0
instead of (e T) — 0 or t —7 0. Clearly, one always has liminf,_,oF(r) C
limsup,_, F (7).

There exist sequential versions of the preceding notions. One says that x € X
is in the sequential limit inferior seq-liminf, o F(¢) of F(-) as t — 0 if for every
sequence (#,) — 0 in T there exists a sequence (x,) — x such that x, € F(t,) for
all n € N large enough. The sequential limit superior seq-limsup,_,, F () of F(-) as
t — 0 is defined as the set of x € X such that there exist sequences (,) — 0in 7,
(x,) — x in X such that x,, € F(t,) for all n € N.

Exercise. Show that liminf,_,o F(¢) C seq-liminf,_,o F(¢) C seq-limsup, o F(¢) C
limsup,_,, F (7).

When X is metrizable and 0 has a countable base of neighborhoods, the
sequential definition coincides with the original definition in view of the following
characterization, whose simple proof is left to the reader.

Proposition 1.42. A point x in a metric space (X,d) belongs to liminf, 7y, F(t)

if and only if limy(cq)0d (x, F(t)) = 0.
It belongs to lim supt(eTHOF(t) if and only if liminf, ey d(x,F(t)) =0.

Proposition 1.43. If there exist S € F :={UNT : U € Ap(0)} and a map
f 1S — X such that limgcg) 0 f(s) = x and f(s) € F(s) for each s € S, then
xe liminf,(€T>H0F(t).

The converse holds when X is metrizable and either F(t) is closed for allt € T
or there exists a positive function on T with limit 0 ast — 0.

Proof. The first assertion follows from the definitions.

Conversely, assume that X is metrizable and let d be a compatible metric. Let
x € liminfy 7y, F(t). If each F(t) is nonempty (that occurs for ¢ close to 0) and
closed, we can find some f(¢) € F(¢) such that d(x, f(¢)) < 2d(x,F(t)), since we
can take f(7) = x when d(x,F(t)) = 0. If there exists a positive function ct(-) on T
with limit 0 as # — 0, we can choose f(¢) € F(¢) in such a way that d(x, f(1)) <
d(x,F (1)) + ofz). O
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Example. LetC, D be two closed subsets of a topological space X and let F (n) :=C
for n an even integer, F (n) := D for n an odd integer. Then limsup,, _,., F (n) =CUD
and liminf, .. F(n) = CND.

Example. Let X be a normed space and let (u,) — u be a convergent sequence in
X\ 0. Then the sequence of half-lines (R u,) converges to R u.

Example. Let Xj be a normed space and let X = X x R be endowed with the norm
given by ||(x,7)|| = (||x]|> +72)"/2. Fort € R, let S, be the sphere S, := {(x,r) € X :
|[x[|>+ (r— )2 = £2}. Then (S;) — Xo x {0} as t — oo.

Example. For f: T — R and F(t) := (—oo, f(¢)] C X := R, one can check that

liminf F(r) = (—eo, liminf f(¢)], limsup F (¢) = (—oo, limsup f(7)],
1(€T)—0 1(€T)—0 H(€T)—=0 1(eT)—=0

where as usual, for 7 := {NNT :N € A4p(0)},

liminf f(¢) := sup inf f(S), limsup f(¢) := inf sup f(S).
H(€T)—0 seT 1(€T)—0 se7

Example. Let W, X be topological spaces, let u € W, andlet g : W x X — R" be a
mapping whose components g’ are lower semicontinuous at (u,x) for all x € X. Let
F(w):={xeX :g'(wx) <0,i=1,...,n}. Then one can easily check that

limsup F(w) C F(u).

w—u

Such a multimap F appears as the feasible set in parameterized mathematical
programming problems. The space R” can be replaced with a general Banach space
Z and the cone R’ with a closed convex cone C, provided one assumes that the
epigraph G := {(x,z) € X x Z: z € g(x) + C} of g is closed.

Example. Let W, X, g, F be as in the preceding example. Suppose that for some
wo € W and all xg € F<(wp) := {x € X : g'(wo,x) <0, i=1,...,n} the functions
w > gi(w,x0) are outward continuous at wo. Then one has g'(w,xy) <0, i=1,...,n,
for w close to wo, so that xg € liminf,,_,,,, F (w). If F(wp) is contained in the closure
of F<(wyp), then F is lower semicontinuous at wy. Note that when X is a normed
space, g'(wp,-) is convex for i = 1,...,n, and F<(wy) is nonempty, the condition
F(wp) C cl(F<(wy)) is satisfied.

We encourage the reader to devise calculus rules for compositions with con-
tinuous maps and usual operations such as unions, intersections, products, inverse
images (or sums when X is endowed with an addition; any other operation can also
be considered).

Links with continuity of multimaps are presented in the following statements,
whose simple proofs are left to the reader.



1.3 Limits of Sets and Functions 37

Proposition 1.44. One has limsup, 7)o F (t) C E if and only if the multimap G
obtained by extending F to T U{0} by setting G(0) :=E, G(t):=F(t) fort €T is
closed at 0.

One has E C liminft(eTHOF(t) if and only if the multimap G obtained by
extending F to T U {0} by setting G(0) := E is inward continuous at 0.

Corollary 1.45. Given a multimap F : X =Y between two topological spaces X
andY and X € X one has limsup,_; F (x) C F(X) if and only if F is closed at X.
One has F(X) C liminfy .5« F(x) if and only if F is inward continuous at X.

Since one always has F(X) C limsup,_; F (x), the first assertion can be rephrased
as follows: F is closed at X if and only if limsup, ,zF(x) = F(X). Since one
always has liminf,_,z F(x) C cl(F (X)), when F(X) is closed, the last assertion can
be reformulated in the following manner: F' is inward continuous at X if and only
if liminf,_,z F(x) = F(%). This last observation justifies the use of the expression
lower semicontinuity instead of inward continuity.

The next result shows the interest of the notions of limits of sets for optimization.
We formulate it in terms of maximization because the statement is easier to
memorize and is convenient for economical questions; however, mathematicians
often prefer the minimization version.

Proposition 1.46. Let (F(t))ier be a parameterized family of subsets of X and
let Fo C liminf;c7)_0 F(t). Given a lower semicontinuous function h: X — R, let
mg 1= suph(Fy), m(t) :=suph(F(t)) fort € T. Then one has my < liminf;_,,.om(t).

Proof. The result is obvious when my = —eo. Assume my > —eo and take r € R,
r < mg. Since h is lower semicontinuous, the set V := h~!((r,+oo]) is open in X
and it meets Fp. Since Fy C liminf,c7)_,o F(t), there exists N € #p(0) such that
F(t)NV # @ forallt € NNT. Picking x, € F(t) NV, we get m(t) > h(x;) > r for
all t € NN T; hence liminf;c7)_,om(t) > r. Since r is arbitrarily close to my, the
announced inequality holds. O

Corollary 1.47. Let F : T =% X be a parameterized family of sets as above and
let Fy C liminf;c7)_, F (t). Given an outward continuous function j: X — R, let
po:=infj(Fp), p(t) :=inf j(F(t)) fort € T. Then one has po > limsup,cz)_,o p(t)-

Proof. Tt suffices to note that for & := — j one has p(r) = —m(t), po = —myp, where
m is defined as in the preceding proposition. a

In the next statement we give an answer to the question, if xq is a cluster point
of a family (x;),er, where x; is a solution to the problem (&%) of maximizing
h over F(t), under what conditions can one assert that xo is a solution to the
limiting problem? We even consider the more general (and more realistic) case of
approximate solutions. Here, givent € T, o > 0, we define the set of a-approximate
solutions to (%) as the set

S(t,o) :={x € F(t) : h(x) > m(t) — o},



38 1 Metric and Topological Tools

where the subtraction in R has been extended to R x R by setting r — s = +oo if
r=+e,scR_,r—s=1/sif r=4co, s €P:=(0,400), r —s= —o0 if r = —oo,
sER, r—s=1/sifr=—c0,5<0.Let S(0) :={x € Fy: h(x) =m(0)}.

Proposition 1.48. Let F : T =2 X be a parameterized family of sets as above, with
T C Pand0 € cl(T), and let h: X — R be outward continuous at some xo € Fy C X.
Assume that mo < liminf, .y _om(t), with mg := suph(Fy), m(t) := suph(F (t)) for
t € T. Given mappingst — €(t), t — x; from T to Ry and X respectively such that
e(t) = 0,5 > xpast —0inT, x, € S(t,€(t)), one has xy € S(0).

Proof. Suppose, to the contrary, that h(xy) < mg. Let r,r’ € (h(xo),mo) with r <
. Since h is outward continuous at xy and x; — xo as ¢t — 0 in T, one can find
N € Ap(0) such that h(x;) < r for all # € NN T. Since mo < liminfyc7)_om(t),
shrinking N if necessary, we may assume that ' < m(r) for all t € T N N. Since
e(t)—>0ast —0in T, we have min(m(r) —e(t),1/€(t)) > r fort € NNT, shrinking
N again if necessary. Then we obtain a contradiction to x; € S(,€(¢)) forr e NNT.

O

1.3.2 Supplement: Variational Convergences

Simple examples show that pointwise convergence of a family (f; );cr of functions
is too weak a property to bring some usefulness in optimization: one may have
(f;) — f pointwise while inff; does not converge to inff. On the other hand,
uniform convergence is too stringent a property to be satisfied in most practical
problems. Such a situation led mathematicians to consider variational convergences,
in particular epiconvergence. These convergences are of interest because one can
define one-sided epi-limits even when (f;) does not converge in any sensible sense.
Moreover, they have a bearing on nonsmooth analysis, because given a function
f:X —Randx € X at which f is finite, one may wish to study the convergence of
the differential quotients f; : v+— (1/1)[f(X+tv) — f(X)] ast — 0.

In the sequel, T is a subset of a pointed topological space (P,0) with 0 € cl(T), X
is a topological space, and (f;),c7 is a family of functions from X to R parameterized
by T. We denote by E; the epigraph of f;: E; := {(x,r) € X xR fi(x) <r}.

Definition 1.49. The function e-liminf; f; (called the lower epilimir) is the function
f whose epigraph E is limsup, E;. The function e-limsup, f; (called the upper
epilimir) is the function whose epigraph is liminf; ;. One says that (f;) epi-
converges to some function f if (E;) converges to the epigraph of f.

This definition is justified by the fact that the sets limsup, E; and liminf; E; are
closed and are stable by addition of vectors of the form (0,) with r € R, and hence
so are epigraphs. Because the study of variational convergences is outside the scope
of this book, we limit our glimpse to a single result.



1.3 Limits of Sets and Functions 39

Proposition 1.50. Let fj € R, (fi )rer be such that e-limsup, f; < fo. Then

limsupinf f; (X) <inf fo(X).
t(€T)—0

Proof. 1t suffices to apply Corollary 1.47 to the epigraph F (¢) of f; (resp. Fp of fp),
taking for j the linear functional (x,r) — r. O

Exercises

1. Give the proofs of the statements presented without proofs in this section.

2. Given a parameterized family (F;);er of subsets of a topological space X,
indexed by 7 C P, with 0 € cl(T'), 0 ¢ T, show that limsup,cz)_,oF(t) is the
smallest subset C of X such that the multimap G : TU{0} = X given by G(0) :=C,
G(t)=F(r) fort € T is closed at 0.

3. Given a parameterized family (F});cr of subsets of X as in Exercise 2, show
that liminf;c7) o F (1) is the greatest subset C of X such that the multimap G :
TU{0} = X givenby G(0) :=C, G(t) = F(t) fort € T is inward continuous at 0.

4. Define the outward limit of a parameterized family F(r) as7(€ T) — 0 as the set
outlim(c7)_,oF (t) of x € X for which there exists a compact subset K of X such that
x € limsup,cr),o F (1) NK.

(a) Show that outlim,(c7) o F (1) = limsup,(c7)_,o F (¢) if X and P are metrizable.
(b) Prove that in general one has

seq-limsup F () C outlimy(cr)_,oF (t) C limsup F(t).
t(€T)—0 t(eT)—0

(¢) Find a link between the notion of outward limit and the concept of compact
outward continuity of a multimap.

(d) Suppose the parameter space P is metrizable and X is the dual of a Banach
space X, endowed with its weak™ topology. Show that x € outlim,c7)_,oF (¢) if x
is a weak™ cluster point of a bounded sequence (x,) satisfying x, € F(z,) for some
sequence (t,) — 0in T.

5. Given an increasing sequence (F;) of subsets of X (for the order defined by
inclusion), show that lim,, F,, = cl(F), where F is the union of the F}’s.

6. Given a decreasing sequence (F,) of subsets of X (for the order defined by
inclusion), show that lim,, F,, = cl(S), where S is the intersection of the F},’s.

7. Given a parameterized family (F;);cr of subsets of a metric space X, show that
C C liminfyc7) o F; if and only if d(x,C) > limsup, (7)o d(x, F;) for all x € X.
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Show that if d(x,C) < liminf;c7)_,od(x,F;) for all x € X and if C is closed, then
limsup, 7)o Fi C C. Prove the converse when the closed balls of X are compact.

1.4 Convexity and Separation Properties

Separation properties are among the pillars of functional analysis. They will be
used throughout the book, in particular in Chap. 3. First, we need to review some
properties of convex sets and functions.

1.4.1 Convex Sets and Convex Functions

Let us recall that a subset C of a linear space X is said to be convex if a segment
whose extremities are in C is entirely contained in C: for all xo,x; € C, t € [0,1],
one has x; := (1 —#)xp +tx; € C. Among convex subsets, the simplest ones are
affine subspaces obtained by translating linear subspaces, half-spaces (subsets D
such that there exist a linear form £ on X and r € R for which D = ¢~ ((—oo, 1))
or D = (! (—eo,r]) and convex cones. The latter are the subsets that are stable by
positive homotheties h, : x +— rx (with r € P := (0, +o0) fixed) and addition, as easily
checked. From antiquity to the present, polyhedral subsets, i.e., finite intersections
of closed half-spaces, have played a special role among convex subsets, since they
enjoy particular properties not shared by all convex sets.

A function f from a linear space X to R := R U {—oo, 0} is said to be convex if
its epigraph

Ep:=epi(f) :={(x,r) eXxR:r> f(x)}

is convex, or equivalently, if for every ¢ € [0, 1], xg,x; € X,

F((I=t)xo+1x1) < (1 —1)f(x0) +1f(x1)

(with the convention that (—oe) + (4e0) = +o0 and 0 - (4-o0) = 40, 0 - (—oo0) = —oo,
which we adopt in the sequel). It is easy to show that f is convex if and only if its
strict epigraph

E} = epi,(f) = {(x.) €X xR:r> f(x)}

is convex. A function f is concave if —f is convex. A function s : X — R is said
to be sublinear if its epigraph is a convex cone, i.e., if it is subadditive (s(x+x') <
s(x) +s(x') for all x,x" € X) and positively homogeneous (s(tx) = ts(x) for all 1 € P,
x € X). A sublinear function p with nonnegative values is called a gauge; if moreover
p is finite and even, i.e., if p(—x) = p(x) for every x € X, then p is a seminorm.
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Convex functions taking the value —eo are very special (for instance, they do not
take any finite value if they are lower semicontinuous); therefore we will usually
discard them and consider only functions with values in Re, := RU {+oco}. In
contrast, it is useful to admit functions taking the value +oo; among them is the
indicator function 1¢ of a subset C of X: let us recall that it is given by 1¢(x) =0
for x € C, 1¢(x) = +eo for x € X \ C. For instance, one can take a constraint C into
account by replacing an objective function f by fc := f + 1¢. One calls proper a
function that does not take the value —eo and takes at least one finite value. The
expression nonimproper would be less ambiguous, but the risk of confusion with
the topological concept is limited, so that we keep the usual terminology. Moreover,
the epigraph of a function f : X — R.. is a proper subset (nonempty and not the
whole space) of X x R if and only if f is proper. We denote by D; or dom f the
domain of f, i.e., the projection on X of E¢ := epi f:

Dy :=domf :={xeX: f(x) < foo}.
The following statement will be used repeatedly; it relies on the obvious fact that
the image of a convex set under a linear map is convex.
Lemma 1.51. Let W and X be linear spaces and let f: W x X — R be convex.
Then the performance function p : W — R defined as follows is convex:
= inf .

p(w) := inf f(w.x)
Proof. The result follows from the fact that the strict epigraph of p is the projection
on W x R of the strict epigraph of f. O

Let us add that if f is positively homogeneous in the variable w, then so is p.

Example. If Cis a convex subset (resp. a convex cone) of a normed space, then the
associated distance function dc : w— infc ||w — x|| is convex (resp. sublinear).

Example. Given f,g: X — R, their infimal convolution f[g : X — R defined by
(fOg)(w) :=inf{f(u)+g(v):u,ve€ X, u+v=w}=inf{f(w—x)+g(x) :x e X}

is convex whenever f and g are convex. If f and g are sublinear then f[Jg is
sublinear. The preceding example is a special case corresponding to f := |||,
g :=1c.

Besides the indicator function and the distance function, two other functions
associated with a convex set play a noteworthy role. If C is a subset of X containing
the origin, the gauge function (or Minkowski gauge) uc of C is defined by

Ue(x) :=inf{r e Ry : x € rC}, xeX.

Clearly, ¢ is positively homogeneous and one has C C u'([0,1]). If C is star-
shaped, i.e., if for all x € C, t € [0,1] one has tx € C, then p'([0,1)) C C. If
moreover C is algebraically closed in the sense that its intersection with every ray
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L,:=Ryu,uecX\{0},isclosed in L, then C = ,ugl ([0,1]). In particular, the gauge
function of the closed unit ball By of a normed space (X, ||-||) is just ||-||. We leave
the proof of the next two lemmas as exercises. Hereinafter, a subset C of a linear
space X is said to be absorbing if for all x € X there exists some r > 0 such that
xerC.

Lemma 1.52. A subset C of X is absorbing if and only if its gauge lc is finitely
valued. If C is a convex subset of X, then lc is sublinear.

Another function one can associate to a subset C of a normed space X is its
support function o¢ or he : X* — R given by

oc(x*) := he(x*) :=sup{(x*,x) : x € C}, xeXxr. (1.8)

Lemma 1.53. If C is a nonempty subset of X, its support function o¢ := h¢ is a
lower semicontinuous sublinear function on the (topological) dual X* of X.

Since the intersection of a family of convex subsets is convex, any nonempty
subset A of a linear space X is contained in a convex set C that is the smallest in
the family %, of convex sets containing A. It is denoted by co(A) and called the
convex set generated by A or the convex hull of A. It is obtained as the intersection
of the family . It is easy to check that co(A) is the set of convex combinations of
elements of A, i.e., co(A) is the set of x € X that can be written as

hay+---+ta,

withn € N\ {0}, a; €A, t := (t1,...,t,) being an element of the canonical simplex
Ay, ie., theset of 1 := (11,...,1,) € R} satisfying t; +--- +1, = 1. The convex hull
co(h) of a function /1 : X — R., is the greatest convex function g bounded above by
h. Its epigraph is almost the convex hull of the epigraph E;, of h. In fact, it is the
vertical closure of co(E}) in the sense that one has epi; g C co(E;) C epig. Thus

m
g(x) ::inf{ZIih(xi):mZ 1, 0:= (... tm) €EAm, X €X, t1x1+---+tmxm:x}.
i=1

Exercise. Show that for g := co(h) the inclusions epi; g C co(epih) C epig may be
strict. [Hint: Consider & : R — R given by 2(0) := 1, h(x) := |x| for x € R\ {0}.]

Note that in general, the union of a family (C,) of convex subsets is no longer
convex; but when (C,) is an increasing sequence (with respect to inclusion), the
union is convex. Similarly, the infimum of a countable family (k,) of convex
functions is convex when the sequence (k) is decreasing; but that is not the case if
the sequence (k) does not satisfy this property. The following lemma describes the
convex hull of the infimum of an arbitrary sequence of functions. It can be taken as
an exercise, but it will be used in Chap. 4.
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Lemma 1.54. (a) Given a sequence (Ey),>1 of nonempty subsets of a linear space
Z, the convex hull C of the union E of the E,’s is the union over p € N\ {0} of
the convex hulls Cy, of E1 U - - - UE):

C:=co(E)=|JCp, whereC,:= co( U E,,). (1.9)

4 1<n<p

For m,p € N\ {0}, setting N,, := {1,...,m} and denoting by J, , the set of
maps j : N, — N, the set C,, is given by

a&=U U {it,»x,-:t:: (tl,...,tm)EAm,x,-GEj(i)}. (1.10)

m>1j€lnp =1

(b) Given a sequence (hy,) of functions on a linear space X, the convex hull k of
the function h := inf, h, is the infimum over p € N\ {0} of the convex hulls
kp:=co(hi,...,hy) of the functions hy, ..., hp. The function k, is given by

m m
k,,(x) = rbl%fljérjl’fplnf{lzzit,hj(l) (xl-) : (tl,...,l‘m) € Am, xi €X, Zitixi :x}.
(1.11)

Proof. (a) In fact, every element of C can be written as a convex combination of a
finite family of elements of E, hence is an element of C,, for some p. The reverse
containment is obvious since C,, C C for all p.

The right-hand side of (1.10) is clearly contained in C,. Using the fact that the
concatenation of an element j of J,, , with an element j' of J, , is an element of
Jmin,p, it is easily seen that this set is convex and contains all E,’s for n € N, so
that it coincides with C,.

(b) Now, when Ej, is the epigraph of a function A,, the vertical closure of C,
is the epigraph of k, :== co(hy,...,h,), the greatest convex function majorized by
hiy... hp.

The right-hand side of (1.11) defines a function that is clearly minorized by k.
Since it is easily seen that it is convex and bounded above by A, for all n € N, it
coincides with k,. One can also derive this formula from (1.10) using epigraphs. [

When X is a normed space, every subset S is contained in a smallest closed
convex subset, its closed convex hull TO(S). It is easy to check using the following
elementary result that this set is just the closure of co(S). In fact, the lemma and the
preceding assertion are valid in any topological linear space. In the sequel, a number
of results given for normed spaces are valid for topological linear spaces. We leave
the proofs of the next two results as exercises.

Lemma 1.55. The closure cl(C) and the interior int(C) of a convex subset C of a
normed space are convex.
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Lemma 1.56. [f the interior of a convex subset C of a normed space is nonempty,
then one has cl(C) = cl(int(C)) and int(cl(C)) = int(C).

Lemma 1.57. If C is a nonempty convex subset of a finite-dimensional space, then
C has a nonempty interior (called the relative interior and denoted by 1i(C)) in the
affine subspace A it generates.

Proof. By definition, A is the smallest affine subspace containing C. Using a
translation, we may suppose 0 € C, so that A is the linear subspace generated by C.
Let n be the dimension of A and let m be the greatest integer k such that there exists
a linearly independent family {e,...,e;} in C satisfying

Co{el,...,ek} = {t1€1+~--+l‘k€k : (l‘l,...,tk) GAk} cC.

Let {ej,...,em} be such a family and let L be the linear space it generates.
Then C is contained in L: otherwise, we could find some ¢ € C\ L and the
family {ey,...,en, e} would satisfy the above conditions and be strictly larger than
{e1,...,em}. Thus L = A and the set co{ey,..., e} has nonempty interior in A for
the unique Hausdorff linear topology on A obtained by transporting the topology of
R™ by the isomorphism defined by the base {ey,...,en}. O

For the next result we need the notion of core of a subset C of a linear space X:

coreC:={ueX:YweX3Ie>0,u+[—¢evCC} (1.12)
={ueC:YWweX\{0} 3o >0, u+[0,avCC}. (1.13)

The elements of the core of C are also said to be internal elements of C and the
core of C is also called the algebraic interior of C. For a convex subset one has the
following characterizations.

Lemma 1.58. For a nonempty convex subset C of a linear space X and u € X, the
following assertions are equivalent:

(a) u € coreC;
(b) C—uis absorbing: for every x € X there exists t > 0 such that tx € C — u;
(¢) X=Ry(C—u):={r(c—u):reRy, ceC}.

Proof. The implications (a)=-(b)=-(c) are obvious. Now (c) implies that 0 € C — u:
this is obvious if X = {0}, and otherwise, taking v # 0 in X, we can write v =
r(c—u), —v ="r(c' —u), for some ¢,c’ € C and r,r’ > 0 (since v # 0), so that
0=r(r+r) e+ (r+v)"'c’ —u € C—uby convexity; hence u € C. Moreover,
if ve X\ {0}, we can find r € P, ¢ € C such that v = r(c —u); then for s € [0,r ]
we have u+sv = (1 —sr)u+ src € C, so that by (1.13), we have u € coreC. O

Let us compare the core and the interior of a convex subset.
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Proposition 1.59. The core of a convex subset C of a normed space X coincides
with its interior intC whenever one of the following conditions is satisfied:

(a) intC # &;
(b) X is finite-dimensional;
(c¢) X is a Banach space and C is closed.

Proof. The interior intC of a convex subset C of a normed space X is always
contained in its core, since for every u € intC and every v € X the map f : ¢t — u+1tv
is continuous and f(0) € intC, so that f(¢) € C for r > 0 small enough.

(a) In order to prove the equality coreC = intC when intC is nonempty, let u €
intC and let X € coreC. The definition of coreC yields some € > 0 such that z :=
%+ &(X —u) € C. Then the mapping & given by h(x) = z+¢&(1+&) ' (x —z) is
a homeomorphism of X onto X satisfying i(u) =X, h(C) C C. Then A(intC) is a
neighborhood of ¥ that is contained in C, so that X € intC.

Assertion (b) follows from assertion (a), taking into account Lemma 1.57, which
asserts that C has a nonempty interior in the affine subspace it generates, which is
the whole space if core C is nonempty.

(c) We may suppose coreC # & and, using a translation if necessary, 0 € coreC.
Then X is the union of the closed subsets nC for n € N\ {0}. Since X is a Baire space,
one of these sets has nonempty interior. Thus intC is nonempty and (a) applies. [

In order to obtain important, but more advanced, interiority results, we need to
introduce a special class of convex sets that has remarkable preservation properties.
Let us say that a subset C of a normed (or topological) linear space X is ideally
convex if for every bounded sequence (x,) of C and element (t,) of A := {(1,) €
RIE 1 Yot = 1}, the series Y~ X, converges in C whenever it converges (which
means that for s, := foxg + --- + fyx, the sequence (s,) converges). We leave as
an exercise the proof of the next lemma, giving some examples and some easy
properties; see [507,984].

Lemma 1.60. Let X be a normed space (or a topological linear space).

(a) Every closed convex subset of X is ideally convex.

(b) Every open convex subset of X is ideally convex.

(c) Every convex subset of X is ideally convex if X is finite-dimensional.

(d) The intersection of a family of ideally convex subsets is again ideally convex.

(e) If X, Y are normed spaces, if A € L(X,Y), and if D is an ideally convex subset
of Y, then C := A=\ (D) is ideally convex in X.

Another permanence property will play an important role.

Lemma 1.61. Let W and X be Banach spaces, and let C be the projection px(F)
on X of a closed convex subset F of W x X. If the projection pw(F) of F on W is
bounded, then C is ideally convex.

Proof. Let x be the sum of a series with general term f,,x,,, where (t,) € Aw, (x) is
bounded and x,, € C for all n € N. For all n € N, there exists some w, € W such that
(Wn,X,) € F. Since pw (F) is bounded, (wy) is bounded. Thus ((wy,x;)) is bounded
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and the series X1, (wy,x,) satisfies the Cauchy criterion. Its sum (W,) is in F since
F is closed and convex (or ideally convex). Then x = X € C, so that C is ideally
convex. (]

For an ideally convex set C, proving that a point x belongs to int(C) is reduced to
checking the algebraic equality X = R (C —x), in view of the next lemma.

Lemma 1.62. Let C be an ideally convex subset of a Banach space X. Then
int(C) = core(C) = core(cl(C)) = int(cl(C)).

Proof. By Proposition 1.59 (c), we already know that core(cl(C)) = int(cl(C)).
Given ¥ € int(cl(C)), let us show that X € int(C). That will prove the chain of
equalities. Performing a translation, we may suppose X = 0. Then there exists some
r > 0 such that B := rBx C clC. Then for all b € int(B) and for all V in the family
A (b) of neighborhoods of b, one has VNB € .4 (b), hence VNBNC # &, so that
int(B) C cI(BNC). Thus, for g € (0,1/2) we have

B =cl(int(B)) C cl(BNC) C BNC+¢B. (1.14)

Given ug € B, let us inductively construct sequences (x,),>1 in BNC, (uy),>1 in B
such that

q"x0 = q"tn 1 —q" . (1.15)
We obtain x; € BNC and u; € B by writing uy = x; + qu; according to (1.14).
Suppose x; and u; have been obtained for k = 1,...,n — 1. Then inclusion (1.14)
yields some x, € BN C and u, € B such that u,_| = x, + qu,, so that (1.15) holds.
Then for p € N\ {0}, we get

P
"o — quoll = ||g” T u,|| < g?
2 " —quo|| = [|lg" up| < q

n=1

Thus guy is the sum of the series with general term ¢"x,, (n > 1), and since the sum
of the series with general term ¢" is g(1 — q)’l < 1, by the ideal convexity of C, we
get (1 —q)ug € C, and since qug € C, by convexity, ug € C. Thus B is a neighborhood
of X contained in C, and hence X € int(C). i

The preceding results can be used to obtain an open mapping theorem for
multimaps with closed convex graphs.

Theorem 1.63 (Robinson—Ursescu). Let W, X be Banach spaces, let F : W = X
be a multimap with closed convex graph. Then for every (w,X) in the graph of F
such that ¥ € core F(W), the multimap F is open at (W,X). In fact, F is open at
(W, X) with a linear rate in the sense that there exists some ¢ > 0 such that

Vi € (0, 1], B(F,1c) C F(B(w,1)).
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Proof. Without loss of generality, we may suppose (w,X) = (0,0), so that F (W) is
absorbing. Let B be the closed ball with center w = 0 and radius » in W and let
C:=F(B) = px((B x X)NgphF). Let us check that C is absorbing. That will prove
that 0 € intC by Lemmas 1.61, 1.62. Let x be an arbitrary point of X. Since F(W)
is absorbing, there exist some s > 0 and w € W such that sx € F(w). If w € B, then
sxeC.Ifwe W\B,lett:=r|lw| ", so that tw € B. The convexity of F yields

stx=tsx+(1-1)0 €tF(w)+(1—t)F(0) C F(tw+ (1—1)0) = F(tw) C F(B) =C,

since 1 € (0,1). Thus, C is absorbing, and every neighborhood of w is mapped by F
onto a neighborhood of X: F is open at (w,X).

The last assertion stems from the convexity of F: if B(X,c) is contained in
F(B(w,1)), then for ¢ € (0,1], one has

B(x,tc) =tB(X,c) + (1 —1)xCtF(B(w,1))+ (1 —1)F(w)

C F(tB(w,1) + (1 —1)w) = F(B(w.1)).

Exercises

1. Let f: X — R be a convex function on a linear space. Show that if for some
X € X one has f(X) = —oo, then for all v € X \ {0} there is at most one ¢t € R such
that f(X+¢v) is finite. If f is sublinear and if f(0) = —eo, then either for all x € X
one has f(x) = —oo, orelse f(x) = 4o forallx € X \ {0}.

If X is a normed space and if f is lower semicontinuous with f(X) = —eo, show
that f cannot take a finite value and that f has a closed domain. Give an example
of such a function. [Hint: Take the valley function vc associated with a nonempty
closed convex subset C, given by v¢(x) = —oo for x € C, U¢c(x) = oo forx € X \ C.]

2. Show that if a function f : X — R takes at least one finite value on a subset C of
a set X, then the problem

(¢)  minimize f(x) forxeC

is equivalent (in the sense that it has the same value and the same set of solutions)
to the unconstrained problem of minimizing f + 1 on X, where 1¢ is the indicator
function of C.

3. Show that a lower semicontinuous function f : X — R. is convex whenever
it is midpoint convex in the sense that for all x,y € X one has f((1/2)(x+y)) <
(1/2)f(x) + (1/2)f(y). Prove that the lower semicontinuity assumption cannot be
dropped.
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4. Let (fi)ier — f pointwise, I being a directed set. Show that f is convex if for all
i €1, f; is convex.

5. Let (fi)ier be a net of convex functions on X. Show that the function f given by
f(x) :=limsup; fi(x) is convex.

6. Let (x,) be a bounded sequence of a normed space X and let p € [1,+o0). Check
that the set C of minimizers of the function f given by f(x) := liminf}, || x — x,||” is
convex. Give conditions ensuring that C is a singleton (called the asymptotic center
of (x4)).

7. Let X be a linear space, g : X — R., convex, & : R.. — R, nondecreasing and
such that /1 | R is convex and h(+4-oo) = 4-co. Check that f := ho g is convex. Deduce
from that for every norm ||-|| on X and nondecreasing convex function / : R — R..,
the function x — A(]|x||) is convex.

8. Prove that for a convex subset C of a finite-dimensional space, the set C is a
linear subspace iff cIC is a linear subspace.

9. (Homogenization) Let C be a convex subset of a linear space W and let Q :=
R4 (Cx {1}) C W x R. Check that Q is a convex cone in Z := W x R. Suppose
that W := X X R and that C is the epigraph of a convex function f on X. Show
that Q is the epigraph of a sublinear function s : X x R —R and give an analytical
expression for s. Such a construction makes it possible to reduce a question about
convex functions to a question about sublinear functions.

10. Recall that the relative interior riC of a convex subset of a normed space X is
the set of points of C that are interior to C when C is considered as a subset of its
affine hull affC, the smallest affine subspace of X containing C.

(a) Show that if x € riC, y € cICNaffC then forall 7 € [0,1) one has (1 —#)x+ry e C.
(b) Prove that if X is finite-dimensional and if C is nonempty, then riC is nonempty
and u € riC iff R} (C — u) is a linear subspace.

(¢) Prove that if X is finite-dimensional, then C, riC, and cIC have the same affine
hull.

(d) Deduce from what precedes that in a finite-dimensional space X one has
cl(riC) = cIC and ri(cIC) =riC.

(e) Prove that for a nonempty convex subset of a finite-dimensional space one has
u € 1iC iff for every x € C there exists t > 1 such that (1 —7)x+ru € C.

(f) Prove that if (C;);e; is a family of convex subsets of a finite-dimensional space X
and if the family (riC;);c; has a nonempty intersection, then

c((C) =(elCi,
il il
and if the family is finite then
ri(ﬂ C,‘) = ﬂriCi
i€l i€l

(see [871])).
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11. The quasirelative interior of a convex subset C of a normed space X is the set
qriC of u € C such that 7(C,u) := cl(R+(C — u)) is a linear subspace.

(a) Show that if C is contained in a finite-dimensional subspace, then qriC = riC.
(b) Show that u € qriC iff the normal cone to C at u defined by

N(C,u):={x" e X" : (x",x—u) <0VxeC}

is a linear subspace of X*.

(¢) Prove that if intC is nonempty then qriC = intC.

(d) Prove that if intC is nonempty then cl(qriC)= clC.

(e) Let A: X — Y be a continuous linear map and let C be a convex subset of X.
Show that A(qriC) C qriA(C) and in particular, when Y is finite-dimensional,
A(qriC) C rA(C).

(f) Suppose C is a convex cone of X such that X = cl(C—C) and CN(-C) =
{0}, CTN(=C*) = {0}, where CT = —C% := {x* € X*: (x*,x) > 0Vx € C}.
Show that qriC is the set of x € C that are strictly positive (i.e., (x*,x) > 0 for
all x* € CT\ {0}).

(g) Find qriC when C = {x € ¢, : ||x||; < 1} (show that x € qriC iff x € C and the
set of n such that x,, # 0 is infinite) (see [126]).

12. Find the interior of the set of positive semidefinite symmetric matrices with n
rows and n columns.

13. A function ¢ : Z — R on a linear space Z is said to be quasiconvex if
q((1 =1)zo +tz1) < max(q(z0),q(z1)) for all zp, z; € Z and ¢ € [0,1]. Show that
the performance function p : W — R associated with a quasiconvex function f :
W x X — R by p(w) := infiex f(w,x) is quasiconvex.

14. Check that the performance function p of the preceding exercise is convex
whenever f is convexlike in the sense for every (wj,x;,r;) € epif (i =0,1) and
t € (0,1), r € R with r > (1 —1)ro +tr; there exists some x € X satisfying
F((1=t)wo+1wy,x) <r.

15. (Locally convex functions that are not convex) Let W := {(x,y) € R? : y < 4x?}
and let f : W — R be given by f(x,y) :=x* + (y —x?). Show that for all w € W the
function f is convex on some neighborhood of w, but that one cannot find a convex
function on R? whose restriction to W is f.

16. Let A be a nonempty subset of a normed space X and let f : X — R be a convex
function. Let C be the convex hull of A. Check that sup f(C) = sup f(A).

17. Let A, B be nonempty subsets of X and let C, D be their respective convex hulls.
Check that f :=d(-,D) is convex and majorized by d(-, B). Deduce from this and
from the preceding exercise that ey (C,D) < ey (A, B), where the excess ey is defined
by en(A,B) :=sup{d(a,B) : a € A}, with the usual convention when one of these
sets is empty (e (@,B) =0 for all B C X, ep(A, ) = +oo when A is nonempty).
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Conclude that the Pompeiu—Hausdorff metric dy given by
dH(A,B) = max(eH(A,B),eH(B,A))

satisfies dy (C,D) < dy(A,B).

18. The recession cone of a nonempty subset C of a topological linear space X is
the set 07C of v € X such that C+R v C C.

(a) Check that if C is the nonempty intersection of a family (C;);es, then 0*Cis the
intersection of the family (0" C;);e;. Is a similar property valid for the union?

(b) ForC:=A xBwithA CY,BC Z, check that 07C =0"A x 0" B.

(¢) Prove that if C is closed convex then 07 C is a closed convex cone and that one
has v € 07 Ciff C+v C C. Show that this equivalence may fail if C is not closed.

(d) Prove that if C is closed convex then 07 C coincides with the asymptotic cone
C.. or T.(C) of C defined as the set limsup,_, ,..(1/1)C.

(e) Prove that if X is finite-dimensional then C is bounded if and only if C.. = {0}.

19. Let A: X — Y be a linear map between two normed spaces and let C C X be a
closed convex set.

(a) Show that A(0TC) C 07 (A(C)), 07C denoting the recession cone of C defined
in Exercise 18.

(b) Prove that when X is finite-dimensional and kerA N 0" C is a linear subspace,
then A(C) is closed.

(¢) Show that if D is another nonempty closed convex subset of X, if X is finite-
dimensional, and if 0*CN 0" D is a linear subspace, then C — D is closed. [Hint:
Reduce the question to the preceding one.]

20. Study the passage from the convergence of a family (C; );cr of closed convex
subsets of a normed space X to the convergence of (07C; ),er (see [681,883]).

21. Introduce a notion of asymptotically compact set in a normed space and use it to
consider generalizations of the properties displayed in the preceding two exercises
(see [787,830])).

22. (Carathéodory’s theorem) Let A := {a; : i € I} be a finite subset of R?. For
JClIletQy:= {EJ-ejrjaj RS R+}.

(a) Show that Qy is closed if the family (a;) c; is linearly independent.

(b) Check that the cone Q := Qy generated by A is the union of the family of cones
Qy forJ C I such that (a;) je; is linearly independent. Conclude that Q is closed.

(¢) Let C:= co(A) be the convex hull of A. Given x € C, prove that there exists a
subset Ay := {a;: j € J} of A of at most d + 1 elements such that x € co(Ay).
[Hint: Apply part (a) to the family of vectors b; := (a;, 1) in R4*1 ]

23. Deduce from Exercise 22 that the convex hull of a compact subset of RY is
compact.
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1.4.2 Separation and Extension Theorems

Again in this subsection we will experience that like Janus, convex analysis has two
faces. Looking at both the analytical face and the geometrical face is fruitful. In
fact, the following extension and separation theorems are closely intertwined. We
start with a finite-dimensional version of the separation theorem.

Theorem 1.64 (Finite-dimensional geometric form of the Hahn—-Banach theo-
rem). Let C be a nonempty convex subset of a finite-dimensional linear space X
and let a € X \ C. Then there exists some f € X*\ {0} such that f(a) > supc f.

If, moreover; C is closed, one can require that f(a) > supc f.

Proof. (a) Let us first consider the case that C is closed. Since X is finite-
dimensional, we may endow X with the norm associated with a scalar product (- | -).
Then the point a has a best approximation p in C characterized by

VzeC, (z—pla—p)<0.

Let f € X* be defined by f(x) := (x| a— p). For all z € C we have f(p) > f(z), and
the second conclusion is established, because f(a) — f(p) = |la —P||2 > 0, since
a¢cC.

(b) Now let us consider the general case in which C is not assumed to be closed.
Let Sx+ be the unit sphere of X* and for x € C let

Syi={u" €8x+ (u*,x) < (u*,a)},

so that f € Sy« is such that f(a) > sup. f if and only if f € NyecSy. Since X is
finite-dimensional, Sy+ is compact; hence this intersection is nonempty, provided the
family of closed subsets (Sy).ecc has the finite intersection property. Thus, we have
to show that for every finite subset F := {x,...,x,} of C one has Sy, N---NSy, # .
Let E := co(F). Since F is finite, E is the image of the canonical simplex

A=At o) ERY 04t 1y = 1)

by the map (fy,...,8,) — t1x] + - - - + fpXy, so that E is compact, hence closed, and
contained in C. Part (a) of the proof yields some f in X*\ {0} satisfying f(a) > f(z)
for all z € E. Without loss of generality we may suppose || f|| = 1. Thus f € S, for
allxeF. O

Corollary 1.65. Let A and B be two disjoint nonempty convex subsets of a finite-
dimensional space X. Then there exists some f € X*\ {0} such that f(a) > f(b) for
allaceAandallb € B.

Proof. Since C:= A — B is convex and since A and B are disjoint, one has 0 ¢ C and
it suffices to take the linear form f provided by the preceding statement. ]
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We now deal with the possibly infinite-dimensional case, for which one has to
use the axiom of choice under the form of Zorn’s lemma. The analytical versions
are intimately linked with the geometrical versions. In the latter cases, one is led
to detect the special place of half-spaces among convex subsets; in the analytical
versions, it is the special place of linear forms among sublinear forms we put under
full light.

Proposition 1.66. The space S(X) of finitely valued sublinear functions on a linear
space X, ordered by the pointwise order, is lower inductive, hence has minimal
elements. Each such element is a linear form.

Proof. We have to show that every totally ordered subset C of S(X) has a lower
bound. Let 5o be a fixed element of C. For every s € C, x € X, we have

s(x) > inf(so(x), —so(—x)),

since we have either s > s¢, hence s(x) > so(x), or s < s9, hence s(x) > —s(—x) >
—so(—x). It follows that p given by p(x) := inf{s(x) : s € C} is finitely valued and,
as easily checked, sublinear. Thus, by Zorn’s lemma, S(X) has minimal elements.
The second assertion is a consequence of the next lemma and of the observation
that if s € S(X) is odd, then it is linear: for every x,y € X, r € R, r <0, one has

s(x4y) <s(x) +5(y) = =s(=x) =s(=y) < =s(—=x—y) = s(x+y),
s(rx) = s(—|r|x) = — |r|s(x) = rs(x).
Lemma 1.67. Let s € S(X) and let u € X. Then the function s, given by

su(x) ;== inf{s(x —tu) —s(—tu) :t e Ry} (1.16)
is sublinear and such that s, < s, s,(u) = —s,(—u).
Thus, when s is minimal in S(X), one has s, = s and s(u) = —s(—u) forall u € X,

so that the proof of the proposition is complete.

Proof. For all x € X, the inequality s,(x) < s(x) stems from the choice r = 0 in
relation (1.16). Now, since for € R we have s(—tu) < s(x —tu) + s(—x), we get

vieR,, —s(—x) <s(x—tu) —s(—tu),
so that the infimum in relation (1.16) is finite. It is easy to check that s, is sublinear.
Taking 7 = 1, x = u in (1.16), we get s, (1) < —s(—u). But since 0 < s, () + s,,(—u)
and s, < s, we obtain

—s(—u) < —su(—u) <su(u) < —s(-u),

hence —s,(—u) = s, (u). O
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Corollary 1.68. For every s € S(X) there exists some linear form ¢ on X such
that ¢ < s.

Proof. Let Sy(X) := {5 € S(X) : ' < s}. The induced order on Ss(X) by S(X) is
inductive, any chain C in S;(X) being a chain in §(X) and any lower bound of C in
S(X) being a lower bound of C in S;(X). Thus Ss(X) has a minimal element, which
is clearly minimal in S(X), hence is linear. (]

Corollary 1.69. Let X be a topological linear space and let h be a continuous
sublinear function. Then there exists a continuous linear form { on X such that
{<h.

Proof. 1t suffices to prove that if £ is a linear form bounded above by 4, then ¢ is
continuous. Given € > 0 we can find a symmetric neighborhood V' of 0 such that
h(v) < & for every v € V. Then for v € V, we have £(v) < h(v) < € and £(—v) <
h(—v) < g, so that [¢(v)| < €. Thus £ is continuous. O

The following lemma is a prototype of so-called sandwich theorems.

Lemma 1.70. Given a linear space X, h: X — R, k: X — R., both sublinear and
such that —k < h, there exists some linear form { on X such that —k < { < h.

Proof. Let us introduce s : X — R by
s(x) :=inf{h(x+y) +k(y): ye X}.
Since h(y) < h(x+y) + h(—x) and since h(y) > —k(y) for all y € X, we have
h(x+y) +k(y) = h(y) = h(=x) +k(y) = —h(=x),

so that s(x) > —eo for all x € X, and of course, s(x) < i(x) < +oo. We easily check
that s is sublinear (in fact, s is the infimal convolution of 7 and g : X — R.. given by
g(x) = k(—x) for x € X) and that s < h, s < g. Thus, taking a linear form ¢ < s, as
given by Corollary 1.68, we have ¢ < I, ¢ < g, whence for x € X, £(x) = —¢(—x) >
—g(—x) = —k(x). O

Theorem 1.71 (Hahn-Banach). Let X be a linear subspace of a real linear space
X, let o be a linear form on Xy, and let h : X — R be a sublinear functional such
that £y(x) < h(x) for all x € Xy. Then there exists a linear form ¢ on X extending {y
such that ¢ < h.

Proof. Defining k by k(x) := —£y(x) for x € Xy, k(x) := +oo otherwise, so that —k <
h, Lemma 1.70 yields a linear form £ satisfying —k < ¢ < h. Then we get £| Xy — (o =
0, the unique linear form on Xj that is nonnegative being the null functional. O

Corollary 1.72. (a) Let X be a normed space and let X € X. Then there exists a
continuous linear form ¢ on X such that ||£]| := sup4(Bx) < 1 and {(X) = ||X.

(b) The map j:X — X** defined by j(x)(x*) :=x*(x) is a monometry, i.e., || j(x)| =
|lx|| for all x € X.




54 1 Metric and Topological Tools

Proof. (a) Let Xy := Rx and let £, be the linear form on X, given by £y (1%) = r |||
for r € R. Thus, for every x € X, one has £p(x) < h(x) := ||x||. Theorem 1.71 yields
some linear form £ on X extending ¢y such that £ < h. Then one has ||| < 1 and

6(x) = |-
(b) For all x € X, the inequality ||j(x)|| < ||x| follows from the definition of a
dual norm. The reverse inequality stems from (a). (]

The preceding corollary is a special case of the next one.

Corollary 1.73. Let X be a normed space and let Y be a linear subspace of X. Then
every continuous linear form y* on Y has a linear continuous extension x* to X such
that [|x || = [ly*]

Proof. Let ¢ := ||y*||. Theorem 1.71 provides some linear form ¢ on X that extends
y* and is bounded above by ¢ ||-||, hence is continuous. Clearly, ||4]| = ||y*||- O

Corollary 1.74. Let Y be a closed linear subspace of a normed space X. If Y # X,
there exists a nonnull continuous linear form f on X that is nullonY .

Proof. Let p: X — X /Y be the quotient map. Since ¥ # X, one can find some
nonnull z € X /Y. Then Corollary 1.72 yields some ¢ in the dual of X /Y such that
£(z) #0. Then f = ¢ o pis nonnull and null on Y. O

Corollary 1.75. Let Y be a closed linear subspace of a Banach space X. Then Y*
is isometric to X* /YL, where Y+ := {x* € X*: x*(y) =0Vy €Y}

Proof. Letr:X* — Y* be the restriction map given by r(x*) :=x* |y. Corollary 1.73
ensures that r is onto. The kernel of r being precisely Y, one can factorize r as
r=qop,where p: X* — X* /Y is the canonical projection and g : X* /Y+ — Y* is
an isomorphism. If we give to X* /Y * the quotient norm defined by ||z|| := inf{ [|x*| :
x* € p~1(z)}, Corollary 1.73 can serve to prove that g is isometric.

The following statement is suggestive. Its proof is left as an exercise using later
results (the sum rule in convex analysis).

Corollary 1.76 (Sandwich theorem). Let X be a normed space, let f : X — R.. be
a convex function, and let g be a concave function such that f > g. If g is continuous
and finite at some point of the domain of f, then there exists a continuous affine
function h on X such that

f>h>g.

Now let us turn to geometric forms of the Hahn—Banach theorem. In the sequel
we say that a subset H of a linear space X is a hyperplane if there exist c € R and a
linear form /2 # 0 on X such that H = h~!(c). We first consider an algebraic version.

Proposition 1.77. Let C be an absorbing convex subset of a linear space X and let
e € X\ coreC. Then there exists a hyperplane H of X such that e € H, H NcoreC =
&. Moreover, C is contained in one of the open half-spaces determined by H.
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Proof. Let j := uc be the Minkowski gauge of C:
j(x):=inf{t > 0:x €rC}.

Since C is absorbing and convex, j is finite on X and sublinear. For all x € core C one
has j(x) < 1, since there exists some r > 0 such that rx € C —x, hence j(x) < (1 +
r)~1. Conversely, if j(x) < 1, then x € coreC, since for all u € X and for & > 0 such
that (1) < 1 — j(x) one has, for all r € [0, €], j(x+ ru) < j(x)+ j(ru) < 1, hence
x+ruetCCCforsomet € (0,1). Since e € X \ coreC, we have j(e) > 1. Let X :=
Re, and let £y : Xo — R be given by £y(re) := rj(e). Then, since rj(e) <0 < j(re)
for r <0, we have ¢y < j| Xy, so that there exists some linear form 4 on X extending
Lo with h < j. Let H:={x € X : h(x) = j(e)}. Then e € H and for x € coreC we
have h(x) < j(x) < 1 < j(e), and hence x ¢ H and coreC C h~!((—oo, j(e))). O

Theorem 1.78 (Eidelheit). Let A and B be two disjoint nonempty convex subsets
of a topological linear space X. If A is open, then there exist some f € X*\ {0},
r € R such that

Va €A, Vb € B, fla)>r=>f(b).

Proof. LetD:=A—B:={a—b:a€A, be B}.Itis a convex subset of X that is
open as the union over b € B of the translated sets A — b, and 0 ¢ D. Taking e € D
and setting C := e — D, we see that e ¢ C, 0 € C, and C is absorbing. Thus, there
exist some s > 0 and some linear form f on X such that f(e) = s and f(x) < s for
all x € C. Since f is bounded above on the neighborhood C of 0, f is continuous.
Moreover, fora € A, b € B, one has f(e —a+b) <s= f(e), hence f(a) > sup f(B).
In fact, since A is open and f # 0, one must have f(a) > r:= sup f(B). O

Theorem 1.79 (Hahn-Banach strong separation theorem). Let A and B be two
disjoint nonempty convex subsets of a normed space (or a locally convex topological
linear space) X. If A is compact and B is closed, then there exist some f € X*\ {0}
and some r € R, 8§ > 0 such that

Ya € A, Vb €B, fla)>r+06>r> f(b).

Proof. For every a € A there exists a symmetric open convex neighborhood V,, of
0 in X such that (a+2V,)NB = @. Let F be a finite subset of A such that the
family (a + V,)4er forms a finite covering of A. Then if V is the intersection of the
family (V,)qer, V is an open neighborhood of 0 and A’NB = & for A’ := A+ V.
The Edelheit theorem yields f € X*\ {0} and s € R such that f(a) > s > f(b) for
all a € A, b € B. The compactness of A ensures that there exists 6 > 0 such that
f(a) > s+206 forall a € A. Setting r := s+ &, we get the result. O

Example. The compactness assumption on A cannot be omitted, as shown by the
example of X = R%, A :={(r,;s) € R% : s > 1}, B:=Rx(—,0].
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Corollary 1.80 (Mazur). Every closed convex subset C of a normed space X is
weakly closed.

Proof. Tt suffices to show that if C is a nonempty closed convex subset of X and if
C # X, then C coincides with the intersection of the family & of closed half-spaces
containing C. That amounts to showing that for a € X \ C there exists some D € ¥
such that a ¢ D. Taking A := {a} and B := C in the preceding separation theorem,
we get some f € X*\ {0} and some r € R such that f(a) > r > f(b) forall b € C.
Thus D := f~!((—eo,r]) belongs to Z buta ¢ D. O

A special case of the Fenchel transform we will study later on is the passage from
closed convex subsets (or their indicator functions) to their support functions. The
support function hc or o¢ of a subset C of a normed space X has been defined in
(1.8) as the function h¢ : X* — R given by

he(x*) := oc(x™) :=sup{(x*,x) :x € C}.

Corollary 1.81 (Hormander). The map h: C — hc is an injective map from the
set € (X) of nonempty closed convex subsets of the normed space X into the space
A (X) of positively homogeneous functions on X null at 0. Moreover, hyc = Ahc
forall A € Ry, C € C(X) and heyavp) = ha + hp, hegaup) = max(ha,hp) for all
A,B € E(X).

Its restriction to the space €,(X) of nonempty closed bounded convex subsets of
X is an isometry onto the set S¢(X) of continuous sublinear functions on X when
6»(X) is endowed with the Pompeiu—Hausdorff metric and S.(X) is provided with
the norm given by ||s|| := sup{|s(x)| : x € Bx }.

Proof. We just prove the injectivity of 4, leaving the other assertions as exercises
(see [198,591]). It suffices to prove that for C,D € ¥ (X) satisfying C\ D # & one
has h¢ # hp. Given b € C\ D we can find x* € X such that (x*,b) > sup,cp (x*,x).
Then we have he(x*) > (x*,b) > sup,.p{(x*,x) = hp(x*). O

Let us give a short account of polarity, a passage from a subset of a normed
space X to a subset of the dual X* of X (or the reverse, or, more generally, from a
subset of X to a subset of a space Y paired with X by a bilinear coupling function).
This correspondence is a geometric analogue of a correspondence for functions, the
Fenchel conjugacy, that we will study in Chap. 3. This correspondence assigns to a
subset S of X its polar set defined by

SO={xeX :Vxe S (x*,x) <1} (1.17)
It is obvious that S” is a weak* closed convex subset of X* containing 0. If S is a
cone, then S” is a convex cone and S := {x* € X* : Vx € § (x*,x) < 0}; if Sis a

linear subspace, then S is the linear subspace S+ := {x* € X*:Vx € § (x*,x) = 0},
also called the orthogonal of S. It is also easy to show that

(SUT)? =5nT°.
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A base of neighborhoods of 0 for the weak* topology is formed by the polar sets of
finite subsets. On the other hand, one has the following classical theorem.

Theorem 1.82 (Alaoglu—Bourbaki). Let X be a normed space and let S be a
neighborhood of 0 in X. Then S° is weak* compact.

Proof. Since S° C T® when T C S and since S” is weak* closed, it suffices to prove
the result when S is a ball centered at 0. Since (rS)° = r~1S° for r > 0, we may
suppose S = By. Then S° = By~ and the result has been shown in Theorem 1.5 in
that case. (]

The polar 7° of a subset T of X* is defined similarly by 70 := {x € X : Vx* €
T (x*,x) < 1};if S is a subset of X, then its bipolar is the set S := (5°)°.

Corollary 1.83 (Bipolar theorem). For every nonempty subset S of a normed
space X, its bipolar is the closed convex hull of SU{0}: % :=co(SU{0}).

Proof. Let C :=co(SU{0}). Since one has § C $%, and since S% is closed convex
and contains 0, one has C C $°°. Givena € X \ C, Theorem 1.79 yields x* € X* and
r € R such that (x*,a) > r > (x*,¢) for all ¢ € C. Since 0 € C, one has r > 0 and
r~lx* e Y c $Y, hence a ¢ $%_ Therefore S = C. O

The next result answers a natural question about taking limits of polar sets.
The notion of outward limit introduced in Exercise 4 of Sect. 1.3 is recalled in the
beginning of the proof.

Theorem 1.84. Let (F(t));er be a parameterized family of subsets of a normed
space X. Then, X* being endowed with the weak™ topology, the following inclusions
hold. When for all t € T the set F(t) is a closed convex cone, the second one is an
equality. If the unit ball of X* is sequentially compact for the weak™ topology, one
can replace the outward limit with the sequential limsup:

0

outlimy(e7) o F (1)° C (tl(ien;)igfoF(r»O, liminf F (1) C (outlimy ey oF (1)°)°.
(1.18)

Proof. We encourage the reader to devise a proof in the sequential case by
simplifying the proof for the general case that follows. Let X* € outlim;cr) 0 (1)°:
there exist nets (t;)ic; — 0, (x])ier — X* for the weak* topology and a compact
subset K of X* such that x; € F(#)°NK for all i € I. Let m > 0 be such that
K C mBy-. For all x € liminf;c7)_,o F(t) we can find a cofinal subset J of I and
a net (xj)je; — x such that x; € F(t;) for all j € J (we can take J = [ if F(r) is
nonempty forall 7 € T, since d(x,F(¢t)) — O as t(€ T) — 0). Since for all j € J,

|5 x) = 2| < | @) =) +[ G =3, 2| < mlej —x]| + [} =320

we get that (¥*,x) = lim;(x},x;) < 1. Since x is arbitrary in liminf,(c7)_,0 F (?), the

two equivalent inclusions of (1.18) are established.



58 1 Metric and Topological Tools

Suppose now that for all ¢+ € T, the set F(z) is a closed convex cone and let
¥ € X \liminf, 7)o F(¢): there exist » > 0 and a subset S of T such that 0 € cl(S)
and d(X,F(t)) > rforallt € S. Forall 7 € S, the Eidelheit separation theorem yields
some x; € Sx+ and ¢; € R such that

sup{(x/,x) :x € F(t)} < ¢ <inf{(x/,y) :y€BE,r)} = (x/, %) —r.

Since 0 € F(r), we have ¢; > 0 for all r € S. Since F(r) is a cone, we must have
(xf,xy <Oforallr € S,x € F(t),i.e.,x; € F(t)°NSx~. Since By is weak* compact,
(x7) has a weak™ cluster point X* € outlim;c7y_,oF (t)°. Passing to the limit in the
preceding inequality, we get (x*,X) > r > 0, so that X ¢ (outlimy(c7)_,oF (1)°)°. O

The following lemma will be used to establish a minimax theorem. In it, we
denote by V and A the operations on R given by r| V-V ry = max(ry,...,r;) and
FIA - Arg =min(ry,...,r;) for r; € R, i € Ny, and as above, Ay stands for the
canonical simplex of R: Ay := {(s1,...,5) € ]R'; 181+ -+ s = 1}. As usual,
max (resp. min) means that one has attainment of the supremum (resp. infimum)
when it is finite.

Lemma 1.85. Let fi,..., fi be convex functions on a convex subset C of a linear
space X. Then

1rC1f(f1 VAR \/fk) = maX{iIéf(Slfl + - —I—Skfk) 1S5 i= (Sl, . ,Sk) S Ak}.
Ifg1,...,8k are concave functions on C then

sup(gi A--- Agr) = min{sup(sig1+ -+ sk8x) : $:= (51,...,5) € Ar}.
c c

Proof. Foreach s := (sy,...,s;) € Ay, we obviously have h:= fi V-V fi > hs:=
s1f1 4+ sife, hence infch > me(s) := infhs(C) := infe(s1 f1 + -+ - + spfx) and
infch > sup{mc(s) : s := (s1,...,5k) € A}, with equality if infch = —eo. Now let
t € R be such that t < infch and let

A={r=(r,....,n) R :IxeC, r,> filx)i=1,...,k},

a convex subset of R¥. The choice of ¢ shows that b := (t,...,t) ¢ A. The finite-
dimensional separation theorem yields some 5 = (51,...,5;) € R¥\ {0} such that

Siri+-c A+ Sere =St St Vr:(rl,...,rk)EA.
We have 5; > 0 for i = 1,...,k, since r; can be arbitrarily large. Since 5 # 0, by

homogeneity, we may suppose 51+ ---+5; = 1, i.e., 5§ € A;. Then for each x € C,
since r; can be arbitrarily close to f;(x), we get

hs(x) =51 f1(xX) + -+ S fi(x) > 1.
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Therefore mc(5) > 7, and we get sup,c,, mc(s) > infch, so that equality holds.
When infch is finite we can take ¢ = infc h, and the inequality infe(5yf) + -+
Skfi) > t shows that we have attainment for this 5 € A;. The second assertion is
obtained by setting f; := —g;. (]

Theorem 1.86 (Infmax theorem). Let A and B be nonempty convex subsets of
linear spaces X and Y respectively, and let { : A X B — R be a function that is
convex in its first variable and concave in its second variable. Then if B is compact
for some topology and if ¢ is outward continuous in its second variable, one has

inf max /¢ = inf ¢ :
A ) = g o)

Proof. The inequality o := infyea SUp,cp £(x,y) > B := supcpginfyea £(x,y) is valid
without any assumption. Here we can write max instead of sup, since B is compact
and ¢(x,-) is outward continuous for all x € A, as is infyeq £(x, ). Given k € N\ {0}
and ay,...,q; € A, applying the preceding lemma with C = B, g; = {(a;,-), we can
find s € A; such that

sup(€(ay,b) A--- Nl(ay,b)) = sup(si€(ay,b) + - -+ silag, b)).
beB beB

Since ¢(-,b) is convex for all b € B, we get

sup(€(ay,b) A--- Nl(ag,b)) > sup(£(sjay + -+ spax, b)) > a.
beB beB

Introducing for a € A the closed subset B, := {b € B : {(a,b) > a}, which is
nonempty by the Weierstrass theorem, we deduce from these inequalities that
B, N---NB,, is nonempty. The finite intersection property of the compact space
B ensures that [),c4 B, is nonempty. That means that there exists some b € B such
that inf,c4 ¢(a,b) > o. Thus B > o and equality holds.

Exercises

1. Prove the Mazur-Orlicz theorem: Let /1 : X — R be a sublinear functional on
some linear space X and let C be a nonempty convex subset of X. Then there exists
a linear form ¢ on X such that ¢ < k and inf¢(C) = infh(C). [See [893, p. 13].]

2. Prove the Mazur-Bourgin theorem: Let C be a convex subset with nonempty
interior in a topological linear space X and let A be an affine subspace of X such that
ANintC = &. Prove that there exists a closed hyperplane H of X containing A that
does not meet intC. [See [506, p. 5].]



60 1 Metric and Topological Tools

3. Prove Mazur’s theorem: Let (x,) be a sequence of a normed space X that
weakly converges to some x € X. Then there exists a sequence (y,) strongly
converging to x such that for all k£ € N, y; is a convex combination of the x,’s.
[Hint: Consider the closed convex hull of {x, : n € N}.]

4. Prove the Sandwich theorem using the Eidelheit theorem.

5. Prove Stone’s theorem: Let A and B be disjoint convex subsets of a normed
space X. Show that there exists a pair (C,D) of disjoint convex subsets satisfying
A C C, B C D that is maximal for the order induced by inclusion. Show that when A
is open one can take for C and D opposite half-spaces, C being open.

6. Let j: Y — X be the canonical injection of a linear subspace Y of a normed
space X into X and let jT : X* — Y™ be its transpose map given by jT(x*) :=x* o j
for x* € X*. Rephrase Corollary 1.73 thus: ;T is surjective. Show that the kernel of
jT is the polar set Y° of ¥ and that Y* can be isometrically identified with X* /Y.

7. Prove Theorem 1.86 under the assumption that f is convex—concave-like in the
following sense: for all ¢ € [0, 1] and all x;, x, €A, y;,y, € B there exist some x3 € A,
¥3 € B such that

L(x3,y) < (1 =1)0(x1,y) +tl(x2,y) Vy€EB,

L(x,y3) > (L =1)l(x,y1) +1l(x,y2) Vx€A.
[Hint: Adapt the proof above or see [140].]

8. LetA: W — X be a continuous linear operator with transpose map AT : X* — W*
given by AT(x*) = x* o A. Show that for D := A(C) one has D° = (AT)~1(C?).

1.5 Variational Principles

It is well known that not all lower semicontinuous functions on a noncompact metric
space that are bounded below attain their infima; as a classical example, one can
take the exponential function on R. However, one can show that a simple and small
perturbation of the given function does attains its infimum. This is the content of
the Ekeland variational principle. It has important and numerous consequences,
in particular for existence results without compactness assumptions. Thus it is a
fundamental tool of nonlinear analysis and of nonsmooth analysis.

In this section we present such minimization results (also called variational
principles). The main one is the Ekeland variational principle. As a preview of this
result, we distill a simple version of it under some restrictive assumptions. We will
prove the general version just after. In a supplement, some detours of independent
interest are made. Algorithmic and dynamical interpretations are proposed in the
exercises. A number of supplementary readings are suggested. They deal with
fixed-point results, metric convexity, the Banach open mapping theorem, and the
Palais—Smale condition.
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1.5.1 The Ekeland Variational Principle

We first state and prove the promised rudimentary version. It relies on a compactness
property rather than on a completeness argument. For this reason, this version is
limited to metric spaces in which closed balls are compact (sometimes called Heine
spaces).

Claim. Let f: X — R be a lower semicontinuous function on some finite-
dimensional normed space that is bounded below. Then for every y > 0 one can
findu € X such that f + yd(u,-) attains its minimum at u:

VxeX,  f(u) < f)+ylx—ul. (1.19)

Moreover, for every € > 0, one can require f(u) < inf f(X)+ €.

Proof. [487] Given y,& > 0 and v € X with f(v) < inf f(X) + €, the function g
defined by g(x) := f(x) + v|Jx — v|| is lower semicontinuous and coercive, since f is
lower semicontinuous and bounded below. Therefore g attains its infimum at some
point u:

Vx€X, f) +yllu—=vll <) +yle—vl, (1.20)

whence by the triangle inequality,
VxeX, F) +yllu—=vl[ < fO) + il —ul +vllu—v].

Subtracting y||u — v|| from both sides of this relation, we get (1.19). Taking x = v in
(1.20), we get f(u) < f(v) <inff(X)+e. O

The preceding proof shows that the result holds in any dual space, in particular
in any reflexive space, whenever f is lower semicontinuous for the weak™ topology.
In fact, we will show that it holds in any Banach space, and even in any complete
metric space. Some more information will also be provided in the full version that
follows. It asserts that every bounded-below lower semicontinuous function on a
complete metric space can be approximated by a function attaining its infimum.
Moreover, the approximation can be made uniform (by changing the metric to a
uniformly equivalent one such as max(d, 1) or d/(d + 1)) and is of a simple nature.
Furthermore, some localization of a minimizer can be obtained.

Theorem 1.87 (Ekeland variational principle). Let (X,d) be a complete metric
space and let f : X — Re := RU{+4o0} be a bounded-below lower semicontinuous
Sfunction with nonempty domain. Then for every y > 0 one can find u € X such that
f+vd(u,-) attains a strict minimum at u:

fu) < f(x)+vyd(u,x)  forallx e X\ {u}. (1.21)

Moreover, givenX € X, one can require that f(u) + yd(u,x) < f(%).
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One can give a slightly more precise statement. Hereinafter, we say that X € X is
an e-minimizer of f if f(X) <inff(X)+e.

Theorem 1.88 (Ekeland variational principle and approximate minimization).
Let (X,d) be a complete metric space and let f : X — R.. be a bounded-below lower
semicontinuous proper function. Given an €-minimizer X of f and given y,p > 0
satisfying yp > €, one can find u € X such that the following inequalities hold:

(@ d(u,x) <p,
(b) f(u)+yd(u,x) < f(X),
(©) f(u) < f(x)+yd(u,x) for all x € X \ {u}.

Proof. Changing the metric d to yd would reduce the proof to the case y = 1, but it
would not be really simpler. It consists in associating to f an order on X by

Ax):={yeX: f(y) +vd(x,y) < f(x)}, xeX.

We have x € A(x) for all x € X, and the relations y € A(x), x € A(y) imply x = y.
Let us check that the relation A satisfies the transitivity property A(y) C A(x) for all
x€X,y € A(x). We may assume x € domf, so that f(y) < +oe. Then for all z € A(y)
we also have f(z) < +eo and yd(y,z) < f(y) — f(z). Since y € A(x), we also have
yd(x,y) < f(x) — f(y). Adding the respective sides of these two inequalities and
using the triangle inequality, we get yd(x,z) < f(x) — f(z), or z € A(x). Thus A
defines an order; we shall construct a minimal element.

Given X € domf, we can define inductively a sequence (x,) starting from xp := X
by picking x,11 € A(x,) satisfying

Flon) + 5 inEf(AG)) (122

N =

1) <

Such a choice is possible: it suffices to use the definition of an infimum when
inf f(A(x,)) < f(x,) and to take x,.1 = x, when inff(A(x,)) = f(x,). Since
Xn € A(xp), (1.22) ensures that the sequence (f(x,)) is nonincreasing, hence is
convergent, since f is bounded below. Let A := lim,, f(x,).

Since x,41 € A(xn), we have yd (xn,X,11) < f(xn) — f(x4+1), and by induction,

¥d (X, Xntp) < f (xXn) = f (Xntp) (1.23)

for all n,p > 0. Thus (x,) is a Cauchy sequence, hence has a limit, that we denote
by u.

Because f is lower semicontinuous, A(x,) is closed for each n. Since relation
(1.23) says that x,;, € A(x,) for all p > 0, we get u € A(x,). In particular, taking
n = 0 and remembering that xy =X, we get

f(u) +yd(x,u) < f(X).
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Moreover, by the transitivity property of relation A, for all v € A(u) and all n € N,
we have v € A(x,). Thus inf f(A(x,)) + vd(x,,v) < f(v) + vd(xn,v) < f(x,) and
relation (1.22) yields

¥Yd(xn,v) < f(n) —inf f(A(xn)) <2 (f () = f(xn11)) =0,

hence d(v,u) = 0. It follows that A(x) = {u}. Hence item (c), and equivalently
(1.21), is satisfied.
If ¥ is such that f(X) <inf f(X)+¢€, and € < yp, we have

inf f(X) + yd(u,%) < f(u) +vd(u,X) < f(x) <inf f(X) +yp,

so that d(u,x) < p. O

The assertions of the preceding statement can be interpreted in the following
way. Given an approximate minimizer X of a lower semicontinuous function f
on a complete metric space, one can find nearby X a genuine minimizer u of
a modified function fy, := f+ yd(u,-) that can be considered as being not too
far from the original one. However, there is a tradeoff between the accuracies of
the two approximating elements u, fy,: one cannot expect to get arbitrarily good
approximations of f and of X at the same time.

As mentioned above, replacing the metric d by an equivalent bounded metric and
v by the general term of a sequence (7,) — 0., we obtain an approximation result.

Corollary 1.89. Let f: X — Ru. be a bounded-below lower semicontinuous proper
function on a complete metric space (X,d). Then there exists a sequence (f,) of
lower semicontinuous functions attaining their infima that converges uniformly to
f. More precisely, one may require that for every €, one have f < f,, < f+¢€ forn
large enough.

Another approximation result involving functions of two variables will be useful.
In it, the perturbation bears on the first variable only.

Corollary 1.90 (Partial Ekeland theorem). Ler (W,d) be a complete metric
space, let X be a topological space, and let f : W x X — Re be a lower
semicontinuous function with nonempty domain that is bounded below. Suppose that
for every w € W there exist a neighborhood V of w and a compact subset K of X
such that for all v € V one has inf{ f (v,x) : x € K} = inf{ f(v,x) : x € X }. Then given
a sequence (&,) — 0., there exists a sequence ((wWn,x,)) in W x X such that for all
n € Nand all (w,x) e W x X,

T, xn) < f(w,x) + €,d(w,wy).

The essence of this statement can be more easily grasped in the case that X is
compact; then one can take V =W and K = X.
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Proof. Let p: W — R., be the function given by

p(w) :=inf f(w,x).

xeX

It is bounded below, proper, and lower semicontinuous by Corollary 1.23. Let (v,)
be a sequence of W such that p(v,) < inf{p(w) : w € W} +&,. Then for each n €
N, Theorem 1.88 yields some w, € B[v,,1] such that p(w,,) < p(w) + &,d(w,wy).
Taking a minimizer x, of f(wy,-), we get the result. O

Theorem 1.88 can be rephrased in such a way that it appears as an existence
result.

Corollary 1.91. [906] Let (X,d) be a complete metric space and let f : X — Re
be a bounded-below lower semicontinuous function. Suppose that for some y > 0
and for all w € X such that f(w) > inf f(X) there exists some x € X \ {w} such that
f(x) < f(w) — yd(w,x). Then there exists u € X such that f(u) = inf f(X).

Proof. We may assume inf f(X) < 4oo. Let u € X be given by Theorem 1.87. As-
suming f(u) > inf f(X) and taking w = u in our assumption, we get a contradiction
to relation (1.21). Thus f(u) = inf f(X). O

Exercises

1. Show that a metric space (X,d) satisfying the Ekeland variational principle in
the form of Theorem 1.87 is complete. [Hint: Given a Cauchy sequence (x;,) of X,
let f: X — Ry be given by f(x) = lim,d(x,x,). Show that f is well defined, is
Lipschitzian, and that if y € (0,1) and if u € X satisfies f(u) < f(x) + vd(x,u) for
every x € X, then f(u) = 0 and (x,) — u; see [961].]

2. Give to the proof of the Ekeland principle the following interpretations.

(a) Consider A(x,) as a set of possible choices for passing from an iteration n to
the following one in some algorithm. The fact that the next iterate x,;; is
not uniquely determined is not unusual in theoretical studies of algorithms.
Of course, for a practical use, a more specific rule must be given to process
each iteration. Note that the class of algorithms described by the proof of
Theorem 1.88 belongs to the family of descent algorithms.

(b) The iterative process given by x,,+1 € A(x,) can be seen as a discrete dynamical
system. The sequence (x,) then appears as an orbit or a trajectory of the system.
Its limit point u is a rest point or stationarity point of the system in the sense
that A(u) = {u}. See [37,892].

(¢) More precisely, prove the following. Every multimap A : X = X from a
complete metric space into itself with closed nonempty values has a rest point
whenever the following conditions are satisfied: (i) for all x € X, y € A(x) one
has A(y) C A(x); (ii) if (x,) is a trajectory of A, then Y, d (x,, Xpt1) < +oo.
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3. Prove that Corollary 1.91 implies Theorem 1.88.
4. Deduce Theorem 1.88 from its more rudimentary forms in which

(a) f is continuous.

(b) X is a bounded closed subset of a Banach space. [Hint: First show that there
is no loss of generality in assuming that X is bounded, replacing X itself with
its subset A(X) if necessary, and then use an embedding of X into the space of
bounded continuous functions on X.]

5. Check that the proof of the Ekeland principle has not used the symmetry of the
function d. For further generalizations of the Ekeland principle, see [137, Theorem
2.5.2] and [655].

1.5.2 Supplement: Some Consequences of the Ekeland
Principle

Under additional assumptions, the conclusion of Theorem 1.88 can be transformed
into interesting consequences. The first one requires the knowledge of Gateaux
differentiability described in Chap.2; the second one, in Corollary 1.93, requires
the concept of subdifferential for a convex function introduced in Chap. 3.

Corollary 1.92. Let f: B — R be a lower semicontinuous function on an open
ball B := B(X,r) of a Banach space E. Suppose f is bounded below and Géteaux
differentiable on B. Then given o > f(X) —inf f(B), there exists u € B such that

IDf ()| < o/r.

Proof. Let e € (0,0) be such that € > f(X) —inf f(B) and let p < ¢ < r be such that
p > eo~'r. Let us set X := B[, 6]. Theorem 1.88 yields some u € B[, p] that is a
minimizer of g : x — f(x) +&p~!|jx — ul| on X. Since the function 4 : x > ||x — u||
has a directional derivative at x = u given by #'(u,v) = ||v|| and since u is interior to
BI[x, 0], we have g’(u,v) > 0 for all v € E, and we obtain

Df(u)(v)+ep L[| >0 WeE.

This inequality shows that |Df (u)|| < &/p < a/r. O

The preceding result can be rephrased in the following way: if for some ¢ > 0
one has ||Df(u)|| > ¢ for every u € B, then inf,cp f(u) < f(X) — cr: the function
f has a significant decrease on the ball B. For a convex function one can get rid
of differentiability assumptions. A generalization encompassing both cases will be
given later on. Here 0 f(u) := {u* € X*: f > u*+ f(u) — u*(u)}.

Corollary 1.93. Let E be a Banach space and let f : X — R be a bounded-below
lower semicontinuous convex function on a ball B := B(X,r) and finite at X. Let
o > f(X) —inf f(B). Then there exist u € B and u* € 0 f(u) such that ||u*|| < ot/r.
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Proof. Let €, p, 0, g be as in the preceding proof. Again we get a minimizer u of
the function g belonging to the interior of B[X, 6], so that we have

f(u,v)+ep v >0 WveE.

The sandwich theorem (or the sum rule for subdifferentials) yields some u* € d f(u)
such that |lu*|| <e/p < a/r. O

Exercise. Prove the following variant of Corollary 1.92 that makes it more precise.
With the same assumptions, setting § = f(x) — inf f(B), for every ¢ € (0, 1) there
exists u € B[x,r] such that || f'(u)|| < B/tr.

1.5.3 Supplement: Fixed-Point Theorems via Variational
Principles

Fixed-point theorems are important tools for solving equations and proving exis-
tence results. The most important ones are the Brouwer theorem, its extensions
by Schauder and Tikhonov and the contraction theorem. We quote the first one,
referring to [126] for an elegant proof, and we show that the Ekeland variational
principle is powerful enough to imply the contraction theorem. It even yields an
extension to multimaps.

Theorem 1.94 (Brouwer). IfC is a convex compact subset of a finite-dimensional
normed space and if f : C — C is continuous, then f has at least one fixed point u,
i.e., a point u € C such that f(u) = u.

Given a multimap F : X =2 X with nonempty closed values from a metric space
into itself, one says that F is a contraction if there exists ¢ € [0, 1) such that for every
x,x' € X one has dy(F (x),F (x')) < cd(x,x"), where dy is the Pompeiu—Hausdorff
distance given for two nonempty closed subsets A,A” of X by

du(A,A") :=max(ey(A,A"),en(A’,A)) with ey (A,A") :=supd(a,A’).
acA

Theorem 1.95 (Picard, Banach, Nadler [739]). Ler (X,d) be a complete metric
space and let F : X = X be a multivalued contraction with nonempty closed values.
Then F has a fixed point: there exists u € X such that u € F(u).

Moreover, if c is the Lipschitz rate of F, then for every X € X and for every
r>(1—c)"'d(x,F (X)), one can find u € B(X,r) such that u € F(u).

Note that when F is single-valued, uniqueness of the fixed point follows from the
contraction property, since for any pair of fixed points u, u’ of F one has
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d(u,u’) =d(F(u),F(u)) < cd(u,u'),

whence d(u,u’) = 0. When F is multivalued, uniqueness is lost (consider the case
F(x) =X for all x € X, for instance).

Proof. Let us define f on X by f(x) =d(x,F(x)) :=inf{d(x,y) : y € F(x)}. Since
d(x,F(x) <d(x,x')+d(x,F (X)) +du(F(x),F (x)),

hence |f(x) — f(x')| < (c+ 1)d(x,x'), we see that f is continuous. Since f is
nonnegative, given X € X, setting € := d(x,F()), and choosing y € (0,1 —¢) so
close to 1 —cthat p := &/ < r, Theorem 1.88 yields some u € B[xX, p] such that

VxeX, d(u,F(u)) <d(xF(x))+yd(u,x).
Taking x € F(u) in this relation and noting that d(x, F (x)) < dy (F (u),F(x)), we get
d(u,F(u)) <du(F(u),F(x))+yd(u,x) < (c+7y)d(u,x).

Passing to the infimum over x € F(u), we obtain d(u,F (u)) < (c+ y)d(u,F (u)).
Since ¢+ 7y < 1, we must have d(u, F (1)) = 0, and hence u € F (u) as F(u) is closed.
O

Another fixed-point theorem can be deduced from the Ekeland principle.

Theorem 1.96 (Caristi, Kirk). Let X be a complete metric space and let F :
X =2 X be a multimap with nonempty values. Suppose there exists some lower
semicontinuous function h : X — Ry := R, U {+eo} such that for every x € X,
y € F(x) one has

h(y) < h(x) —d(x,y). (1.24)
Then there exists some u € X such that F (u) = {u}.

Proof. Applying Theorem 1.87 with f :=h, y:= 1, we get some u € X such that
h(u) < h(x)+d(x,u) for all x # u. If we could find v € F (1) with v # u, taking x :=v
and using (1.24), we would have h(u) < h(v) +d(v,u) < h(u), an impossibility. [

Exercises

1. Show that the Caristi—Kirk theorem is equivalent to the Ekeland principle.

2. Define a function f : X — RU{+co} on a metric space X to be decreasingly
lower semicontinuous if for every convergent sequence (x,) — x such that f(x,+1) <
f(x;) one has f(x) < lim, f(x,). Show that the Caristi-Kirk fixed-point theorem
and the Ekeland variational principle are still valid under the assumption that the
function is decreasingly lower semicontinuous
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3. Let D be a nonempty subset of a complete metric space and let F : D =% X be a
multimap with closed graph in X x X. Let us say that F satisfies the (A-b-C) property
if forc € [0,1), b > O such that b < (1 —c¢)/(1+c¢) and all (x,y) in the graph of F
with x # y there exist u € X, z € D such that

d(x,y) =d(x,u)+d(u,y), d(u,z) <bd(u,x), dy,F(z)) <cd(x,z).

We say that F satisfies the (A—C) property if there exists some ¢ € [0, 1) such that
the preceding property holds for all b € (0,(1 —c)/(1+c¢)).

The multimap F is said to be a directional contraction if its graph is closed
and for some ¢ € (0,1) and all (x,y) € F with x # y there exists some z € X \ {x}
satisfying

d(x,y) =d(x,z) +d(z,y), d(y,F(z)) <cd(x,z2).

(a) Check that a closed-valued contraction is a directional contraction.

(b) Check that a directional contraction satisfies the (A—C) property.

(¢) Using the Ekeland variational principle, show that if F satisfies the (A—b—C)
property, then F has a fixed point « and forall x € Dand alla > (1 —b) /(1 +
b) — c one can find a fixed point u of F such that d(x,u) < (1/a)d(x,F(x)).

(d) Deduce from the preceding question that if F satisfies the (A—C) property, then
F has a fixed point u and, denoting by S the set of fixed points of F, for all
x € D, one has that d(x,S5) < (1/(1 —¢))d(x,F(x)). [Hint: See [56,214].]

1.5.4 Supplement: Metric Convexity

As an application of the preceding theorem, let us give a simple proof of Menger’s
theorem. It deals with a notion of metric convexity (in spaces without linearity
structure). Let us give precise definitions. A metric space (M,d) is said to be
metrically convex (or for short, convex) if for every two distinct points a,b of M
there exists some ¢ € M\ {a,b} between a and b in the sense that

d(a,c)+d(c,b) =d(a,b).

We write acb when this relation holds; more generally, for a finite sequence ay,
aiy,...,a, of points of M, we write apa ...a, if d(ag,a) +---+d(an—1,a,) =
d(ag,an). The space is said to be a metric segment space if for every two points
a,b in M there exists a geodesic joining them, i.e., an isometric mapping g : [0,¢] —
2([0,4]) € M, where ¢ := d(a,b), such that g(0) = a, g(¢) = b. Let us call it a
metric midpoint space if for every two points a,b in M there exists ¢ € M such
thatd(a,c) = d(c,b) = 1d(a,b).

Theorem 1.97 (Menger). A complete metric space is a metric segment space iff it
is a metric midpoint space iff it is a metrically convex space.
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Proof. Clearly, a metric segment space (M,d) is a metric midpoint space. Let us
first prove the converse when (M,d) is complete. Let (M, d) be a complete metric
midpoint space. Let a,b € M with £ := d(a,b) > 0 (the case a = b is obvious). Let D
be the set of real numbers of the form 27 "k¢ with n € N\ {0}, k € NN[0,2"]. Using
induction on 7 we can find an isometry i from D onto a subset D’ of M by defining
it on the set

D,:={27"k: ke NN[0,2"]}

using the midpoint property. Since D is dense in [0, £], since M is complete and since
i is uniformly continuous, we can extend i to a uniformly continuous mapping g on
[0,¢] with the same Lipschitz rate 1. In fact, g is isometric, and it is the expected
geodesic.

Obviously, a metric midpoint space (M,d) is a metrically convex space. Let us
prove the converse when (M,d) is complete. Let a,b € M with ¢ := d(a,b) > 0
(again the case a = b is obvious). Let us endow

X := {(u,v) EM XM :auvb, d(a,u) < %é, d(v,b) < %é}

with the metric given by d((u,v), (u',v')) :=d(u,u’)+d(v,»'), making it a nonempty
complete metric space (it contains (a,b) and is closed in M x M). Let F : X = X be
given by

F(u,v)={('V) € X : auu'v'vb}.

Clearly, F has a nonempty set of values. Let 1 : X — R be given by h(u,v) :=d(u,v).
Since for every (u,v) € X and any («',v') € F(u,v) we have

du,u')+d(W' V) +d(V,v) =d(u,v),

we see that h(u',v') = h(u,v) —d((u,v), («',v')). Moreover, h is continuous.
Theorem 1.96 yields some (u,v) € X such that F (u,v) = {(u,v)}. If we had u # v
we could find w € M such that uwv and w # u, w # v. Then we would have awb and
either d(a,w) < $¢ or d(w,b) < 3¢.In the first case we would have (w,v) € F(u,v),
and in the second case we would have (u,w) € F(u,v); in both cases we would have
F(u,v) # {(u,v)}, a contradiction. O

Exercise. [92,944] A metric space (M,d) is said to be approximately metrically
convex if for every x,z € M, t € (0,1), € > 0 there exists some y € M such that
d(x,y) <td(x,z), d(y,z) < (1 —1)d(x,z) + €. For two subsets C, D of (M,d) and
re Ry, set B(C,r):={xe€M:dc(x) <r}, BIC,r] :={x €M :dc(x) <r} and
gap(C,D) :=inf{d(x,y) : x € C,y € D}. Show that each of the following properties
characterizes approximately metrically convex metric spaces:

(a) Forallx € X, r,s > 0 one has B(B(x,r),s) = B(x,r +s);

(b) Forall x € X, r,s > 0 one has B[B[x,r],s] = Blx,r +s];
(c) Forall w,x € X and r € [0,d(w,x)] one has d(w,B(x,r)) =d(w,x) —r;
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(d) Forall w,x € X and r € [0,d(w,x)] one has d(w,Bx,r|) = d(w,x) —r;
(e) Forallx € X, r,s > 0 one has dy (B|x, ], B[x,s]) = |r —s|;
(f) Forall w,x € X, r,s > 0 one has gap(B[w,r], B|x,s]) < max(d(w,x) —r—s,0).

Exercise. Show that the space %), of nonempty, bounded, closed convex subsets
of a Banach space X is metrically convex and complete when endowed with
the Pompeiu—Hausdorff distance. [Hint: Given Cy, C| in 6}, ¢ € [0,1], using
Hormander’s isometry 4 : C — he from %), into the space BC(S) of bounded
continuous functions on the unit sphere S of the dual X* of X given by hc(x*) :=
sup{ (x*,x) : x € C}, show that for C; := (1 —)Cy +tC; one has dy(C;,Cy) =
tdy (Co,C1), du(C,Cy) = (1 —1)dy(Co,Cy ). Here BC(S) is endowed with the sup
norm.]

1.5.5 Supplement: Geometric Principles

The Ekeland principle is equivalent to geometric results of interest. Here we only
show how one can deduce the Drop theorem from Theorem 1.88; we refer to the
exercises for the reverse direction. In the sequel, the drop D(a,B) generated by a
point @ € X and a subset B of a normed space X, also denoted by [a, B] (because it
reduces to a segment when B is a singleton), is the set

D(a,B):=co({a}UB)={(1—t)a+tb: t €[0,1], b € B}.
Recall that the gap between two subsets A, B of X is defined by

A.B):= inf d(a,b).
gap(A, B) s (a,b)

Theorem 1.98 (Drop theorem [253]). Let E be a nonempty complete subset of a
normed space X and let B be a nonempty, bounded, closed, convex subset of X such
that & := gap(B,E) > 0. Then there exists some e € E such that D(e,B) NE = {e}.
Moreover, givene € E one can choose e € END(e,B).

Proof. Let B := diam(B) := sup{d(w,x) : w,x € B} be the diameter of B and let
¥ > 0 be such that y(1+ 3/0) < 1. Let us apply Theorem 1.88 to the function
f:=d(-,B) that is continuous and bounded below. Given € € E, we can find e €
A(@):={x€E: f(x)+yd(x,e) < f(e)} such that

d(e,B) <d(x,B)+7y|x—e|l| VxeE\{e}. (1.25)
Let us show that D(e, B) NE = {e}. Suppose, to the contrary, that there exists some
y € D(e,B)NE\ {e}: there exist 7 € [0,1) and z € B such that y = te + (1 —1)z. For
any € >0, b € B such that ||e — b|| < (14 €)d(e, B) we have

d(y,B) < |jtb+ (1 =t)z—y| = [ltb —te|| <t(1 +€)d(e,B),
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and since € > 0 can be taken arbitrarily small, d(y,B) < td(e,B). Now |y —el|| =
(1—1t)|lz—e| and ||z—e¢| < d(e,B)+ B < (14 /8)d(e,B), so that gathering the
preceding estimates with the inequality d(e,B) < d(y,B) + y||y — ¢|| obtained by
taking x :=y in (1.25), we get

d(e,B) <td(e,B)+y(1—t)|z—e| <td(e,B)+y(1—1)(1+/5)d(e,B),

a contradiction to y(1+ /) < 1 and d(e,B) > 6 > 0. O

The next consequence involving a truncated cone rather than a drop will be
useful.

Lemma 1.99. Let E be a nonempty complete subset of a normed space X, let w €
X\E,e€E,s>r>0suchthat Bw,s|NE = &, andlet B= B[w,r], C:=R,(B—é).
Then there exists some e € END(e,B) such that (e +C)NENB(e,s —r) = {e}.

Proof. Theorem 1.98 yields some e € END(e,B) such that D(e,B)NE = {e}. Let
beB,t € (0,1] be such thate = (1 —1)b+re. Then since tB+ (1 —t)b C B, we have

B—e=B+t '(1-0)b—t'ect ' (B—e),

sothat C:=Ry(B—¢) C R (B—e¢). Thus, forx € EN(e+C)NB(e,s —r) we can
find g € R, and b’ € B such that

x—e=q(b —e).

Since |x—e|| <s—rand || —e| > s—r, wehave g= ||b' —e|| ' |[x—e|| < 1. Thus
x=e+q(b'—e) e D(e,B)NE ={e},and x =e.

Let us apply the preceding lemma to density properties. We need the following
terminology. A point e of a subset E of a normed space X is said to be a support
point of E if there exists a closed convex proper cone C with nonempty interior
and some € > 0 such that (e +C)NENB(e,e) = {e}. When E is convex, e is a
support point of E iff it is an exposed point of E, i.e., a point e € E such that there
exists some f € X*\ {0} satisfying f(e) > f(x) forall x € E \ {e}. The condition is
obviously sufficient (take C:= {w € X : f(w) > (1/2)||f]| - [|w||}); it is necessary by
the Hahn—Banach theorem. The preceding lemma provides plenty of support points,
even in the nonconvex case.

Corollary 1.100. For every nonempty complete subset E of a normed space X, the
set S of support points of E is dense in the boundary bdry(E) of E.

Proof. The conclusion is obvious if the boundary of E is empty. Let e be a boundary
point of E and let o0 > 0 be given. There exists some w € B(e,a/2) \ E. Let
s > 0 be the radius of a closed ball with center W contained in X \ E, so that
s <dWw,E) <d(w,e) < a/2, and let r € (0,s). The preceding lemma provides
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some e € END(e,B[w,r]) such that (e+C)NENB(e,s —r) = {e}: e € S. Moreover,
d(e,e) < diamD(e,B[w,r]) < o. That shows that S is dense in bdry(E). O

The preceding observations entail a result whose discovery is at the origins of the
results of the present section.

Theorem 1.101 (Bishop—Phelps [104]). For any closed convex subset C of a
Banach space, the set of support points of C is dense in the boundary of C.

The next theorem reveals another density result that can be obtained by the
method of the present section. A nonconvex version will be given later on
(Theorem 1.153).

Theorem 1.102 (Bishop—Phelps). For every bounded, closed, convex subset C of
a Banach space X, the set of continuous linear forms that attain their maximum on
C is dense in X*.

Proof. Leth € X* and let € > 0 be given. Let g be the indicator function of C and let
f:=g—h.Letx € Cbe such that f(x) < inf f(C) + o with o := 1. Taking r > 1/¢
large enough, the ball B := B(X, r) contains C and inf f(B) = inf f(C). Corollary 1.93
yields some e € domf = C and €* € d f(e) such that ||e*|| < ot/r < €. Thene*+h e
dg(e). This means that (h+e¢*,x—e) <0 forall x € C. O

Taking for C the closed unit ball of X, we get that the duality mapping J : X = X*
defined by J(x) := {x* € X* : ||x*|| = |lx||, (x*,x) = ||x||*} has a dense image in X*.

Let us quote the following result, for it shows the limitations of what one can
expect. See [374,507], for instance, for the proof.

Theorem 1.103 (James). A bounded, weakly closed subset E of a Banach space
X is weakly compact if and only if every continuous linear form on X attains its
maximum on E. In particular, X is reflexive if and only if every x* € X* attains its
supremum on the unit ball of X.

1.5.6 Supplement: The Banach—Schauder Open Mapping
Theorem

Let us also show that the Ekeland variational principle yields the Banach—Schauder
open mapping theorem, one of the cornerstones of linear functional analysis. It is
a special case of the Robinson—Ursescu theorem, but its importance justifies a new
proof. The one we present uses some results from convex analysis (Chap. 3).

Theorem 1.104 (Banach-Schauder open mapping theorem). Ler X and Y be
Banach spaces and let A : X — Y be a continuous linear mapping such that A(X) =
Y. Then A is open i.e., for every neighborhood U of a point x € X, the image V :=
A(U) is a neighborhood of A(x).
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Theorem 1.105 (Banach isomorphism theorem). If A is a linear continuous
bijection between two Banach spaces, then A is an isomorphism.

We can even give a quantitative form to this result by introducing the openness
rate of A as

o(A) :=sup{re R, : rUy C A(Ux)},

where Uy (resp. Uy ) is the open unit ball of X (resp. Y). It would not change if the
closed unit balls By (resp. By) were substituted for the open balls; here we make the
usual convention that the supremum of the empty subset of R, is 0.

We will relate w(A) to the injectivity constant of the transpose map AT : Y* — X*
of A. The injectivity constant o (B) of a linear mapping B : V. — W between two
normed spaces is defined by

o (B) :==1inf{||BW)||:veE Sy} =max{ce R, : |BW)|| >c]|v|| YveV}.

Clearly, B is injective when ot(B) is positive, but the converse is not true.

Exercise. Define an injective continuous linear map B from a separable Hilbert
space into itself such that o(B) = 0.

Exercise. Let b be a bounded positive function on a set S that is not bounded away
from 0. Check that the map B : f — bf on the space V = W of bounded functions
on S is injective but o(B) = 0.

When B is an isomorphism, the constant c(B) is related to the norm of the inverse

B~ of B by the relation o (B) = HB’1 Hfl (with the usual conventions).

We define the Banach constant B(A) of A : X — Y as the injectivity constant of
the transpose AT of A: B(A) := o¢(AT). Then we observe in the following proposition
that 3(A) > 0 whenever A is open.

Proposition 1.106. For any continuous linear operator A : X — Y between two
normed spaces one has 3(A) := o(AT) > w(A). In particular, when A is open, one
has ol(AT) > 0 and AT is injective. If X is complete, one has B(A) = o(A).

Proof. Let r > 0 be such that rUy C cl(A(Byx)). By definition of the dual norm on
X* and the fact that ||y|| = sup{(y*,y) : y* € Sy~} (by Corollary 1.72), we have
o(AT) = inf{sup{(AT(y*),x) : x € By} : y* € Sy~ }
= inf{sup{(y*,A(x)) :x € Bx} : y" € Sy+}
= inf{sup{(y",y) : y € cl(A(Bx)} : y* € Sy-}
(

)
> inf{sup{(y*,y) :y€rUy} : y" € Sy} =r.

It follows that at(AT) > @(A) := sup{r € Ry : rUy C cl(A(Bx))} > w(A).
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Let us prove the equality a(AT) = w(A) when X is complete. Since this
equality holds when o(AT) = 0, it suffices to show that when o(AT) > 0, for all
r € (0,a(AT)) one has rUy C A(Bx), and hence rUy C A(sUyx) for all s > 1 and
r<o(A).

Giveny € Y \ A(Bx), we wish to show that y ¢ rBy. Let us set f(x) = [|A(x) — y||
forx € X. Then f(0) = |ly|| <inf f(X)+ ||y||. Let us apply Theorem 1.88 with =0,
e=|y|l, p =1 onX.It yields some u € By that is a minimizer on X of the function
g x> f(x)+e€|lx—ul. Since g is convex and u is a minimizer of g on X, we
have 0 € dg(u). By the classical rules of convex analysis (Theorems 3.39 and 3.40),
we get some u* € df(u) such that ||u*|| < & and some v* € J ||-|| (A(u) —y) such
that u* = AT(v*). Since y ¢ A(Bx), we have v := A(u) —y # 0, and hence |[v*|| =1
(one can easily check that v* € d ||-|| (v) iff v* € Bx+ and (v*,v) = ||v]|). Thus, by
definition of o/(AT),

o(AT) <[lu’l| <e =y

and r < 0 (AT) < ||y||: ¥ ¢ rBy. Therefore rBy C A(Bx) and r < w(A). O

Exercise. Deduce from the Hahn—Banach theorem that o(AT) = @(A).
The open mapping theorem easily follows from the preceding proposition. In
fact, when A is surjective, we have

= oo

Y = JA(nBx) = | J clA(nBy).

n=1 n=1

The Baire category theorem asserts that for some n > 1 the set clA(nBy) has
nonempty interior. Thus clA(Bx) has nonempty interior. Since this set is convex
and symmetric with respect to 0, we get that 0 belongs to the interior of clA(By):
there exists r > 0 such that rBy C clA(Bx). Then @(A) > 0 and thus ®(A) > 0 by
the proof of the preceding proposition: A is open. O

Corollary 1.107 (Closed graph theorem). Every linear map with closed graph
between two Banach spaces is continuous.

Proof. Let B:Y — Z be such a map. The graph X of B, being a closed linear
subspace of Y X Z, is a Banach space, and A : (y,By) — y is a continuous bijection
from X onto Y. Its inverse y — (y, By) being continuous, B is continuous. O

Exercise. Let X and Y be Banach spaces and let A : X — Y be a linear map such
that for every y* € Y* the linear form y* o A is continuous on X. Show that A is
continuous. [Hint: Prove that the graph G of A is such that G = {(x,y) € X x Y :
Vy* € Y*,y"(A(x)) =y*(y)}, hence is closed.]

A classical factorization result will be helpful.

Lemma 1.108. Ler X,Y be Banach spaces, let A : X — Y be a surjective continuous
linear map, and let { € X* be such that £(x) = 0 for all x € N := kerA. Then there
exists some y* in the dual Y* of Y such that { = y* o A.
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Proof. Since A is surjective and since for every x,x’ € X satisfying A(x) = A(x')
one has £(x) = £(x'), there exists a map k : ¥ — R such that £ = ko A. It is easy
to check that k is linear. Now, the Banach open mapping theorem asserts that there
exists some ¢ > 0 such that for all y € ¥ one can find some x € A~!(y) satisfying
|lx|l < c|ly]l- It follows that for all y € Y one has k(y) = k(A(x)) = £(x) < [[£]|c||y|-
Thus k is continuous and we can take y* = k. O

Remarks. Instead of using the Banach open mapping theorem, one can introduce
the canonical projection p : X — X /N, observe that £ can be factorized as £ = fo p
for some / in the dual of X /N, and use the Banach isomorphism theorem to get that
the map A : X /N — Y induced by A is an isomorphism, so that one has ¢ = y* o0 A

with y* —ToA . O

1.6 Decrease Principle, Error Bounds, and Metric Estimates

The framework of metric spaces allows one to give a quantitative approach as well
as a qualitative approach to a number of questions. Moreover, it is such a bare
framework that the main ideas are not hidden by secondary facts or additional
structures. The present section takes advantage of these favorable features. We first
experience them when dealing with decrease principles and estimates bearing on
the conditioning of a function f : X — R := RU{+c0} on a metric space (X,d) of
the form

Vx€eX, d(x,8) < cf(x),

where S := f~1({0}), ¢ > 0, and for a subset S of X, ds(-) := d(-,S) is the distance
Sfunction given by d(x,S) := inf{d(x,y) : y € S}, with the convention d(x,S) := 4o
if S is empty. More generally, if F' is a map or a multimap from X into another metric
space Y and if b is a given element of ¥, it is of interest to estimate the distance to the
solution set S := F~!({b}) of the equation F (x) = b or the inclusion b € F (x) by the
computable value d(b, F (x)). The possibility of getting such an estimate is obtained
by the study of what is now known as the study of calmness, of error bounds, and
of metric regularity; it has given rise to a vast literature. Estimates of the form

d(x,F~'(b)) < cd(b,F(x))

are particularly useful in nonsmooth analysis. They can also be used in connection
with penalization techniques for optimization problems. We devote the third subsec-
tion below to such a motivation. Its simple penalization lemma is of great use. The
last subsections deal with a systematic study of relations similar to the preceding
one. We also connect this subject with the notion of open map or multimap and with
Lipschitzian properties of multimaps appearing in a number of problems.
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1.6.1 Decrease Principle and Error Bounds

The following question arises frequently: given a function f : X — R := [0,c0] on
a metric space (X,d), if the value of f at x € X is small, is x close to the zero set
S:= f~1(0) of £? Such a question is of importance for algorithms, but its application
is much larger.

The above question can be given a precise quantitative form. The following
elementary lemma answers such a need in describing a desirable behavior of f that
secures a positive answer to the question. In its statement, we say that y: R, — Ry
is a gauge or a growth function if y is nondecreasing and y(z) > 0 for ¢ > 0, and we
recall that i : R, — R, is a modulus if u is nondecreasing and p(¢) — 0 as ¢t — 0.
The proof is left as an exercise.

Lemma 1.109. [808] The following assertions about f are equivalent:

(a) fiswell set: for every sequence (x,) of X, (f(xn)) = 0 = (ds(x,)) — 0;
(b) There exists a modulus L such that ds(-) < u(f(-));
(¢c) There exists a gauge v such that y(ds(-)) < f(-).

These quantitative notions can be useful for the study of the speed of convergence
of algorithms. However, we will restrict our attention to the case that the function f
is well conditioned or linearly conditioned in the sense there exists a constant ¢ > 0
such that y(r) := cr for r > 0 small enough. Then the conditioning rate y¢(x) of f
atX € S is the supremum of the constants ¢ such that cdg(-) < f(-) near x:

- . f(x)
(X):= 1 f = .
()= lminf S

The terminology is justified by the following example, showing a relationship with
the notion of conditioning of a matrix, the ratio between its smallest eigenvalue and
its largest one.

Example. Let A be a positive definite symmetric operator on a Euclidean space
X such that ||A]| = 1. Let ¢ be the quadratic form associated with A by ¢(x) :=
(1/2)(Ax | x), where (- | -) is the scalar product of X, and let f := ,/g. Then
Yr(r) = \/a/2r, where o is the least eigenvalue of A, whereas ¢ is nonlinearly
conditioned: the greatest gauge v satisfying y(ds(-)) < q(-) is %,(r) = (1/2)or?.
Since the greatest eigenvalue of A is 1, the conditioning of A is . O

The Ekeland variational principle can be used to obtain a useful estimate about
the distance to the set of solutions of an equation or to the set of minimizers of a
function. The proof of this estimate is similar to the proof of Corollary 1.91, but it
has a more local character.

Proposition 1.110 (Error bound property). Let f: X — R, be a nonnegative
lower semicontinuous function on a complete metric space (X,d) and let S :=
£ 1({0}). Let x € domf, ¢ > 0, and p > f(x)/c be such that for every y € (0,c),
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u € B(x,p)\ S there exists v € X \ {u} satisfying f(v) + vd(u,v) < f(u). Then S is
nonempty and

d(x,8) <c 'f(x).

Proof. In Theorem 1.88 take ¥ :=x, ¥ € (0,¢) with f(x)/y < p. Let u € X be given
by the conclusion of Theorem 1.88, i.e., such that

Fl)+pd(ux) < (), Fu) < FO)+7d(ux) forall ¥ € X\ {u}.

Then one has d(u,x) < y~!f(x) < p. The second inequality and our assumption
ensure that we cannot have u € B(x,p) \ S. Thus u € S and d(x,S) < d(x,u) <
y~! f(x). Since v is arbitrarily close to ¢, we get the announced estimate. O

The lower semicontinuity condition in such a result can be relaxed. Here we say
that a function f : X — R is such that f~! is closed at 0 if for every convergent
sequence (x,) such that (f(x,)) — 0, one has lim, x, € S := f~1({0}). This concept
coincides with the notion of closed multimap for F := f~!. Given s € (0,1), let us
say that a function f is s-steep at x € dom f if for all w € X \ S satisfying d(w,x) +
F(w) < f(x)/s, one has inf{f(v) : v € Blw, f(w)]} < (1 —3)f(w).

Proposition 1.111 (Steepness principle [225]). Let (X,d) be a complete metric
space and let f : X — Ry, S:= f~1({0}). Suppose that f~" is closed at O and that
for some s € (0,1) the function f is s-steep at x € dom f. Then S is nonempty and
d(x,S) < f(x)/s. In fact, there is some u € S such that d(u,x) < f(x)/s.

Proof. We may assume that f(x) > 0 and B(x, f(x)/s) NS = & since otherwise the
inequality is trivial. Let us show that B[x, f(x)/s] NS # . Starting with ug := x,
we construct inductively a sequence (u,) of X \ S satisfying d(upy1,u,) < f(un),
Sfupy1) <tf(up) for t :== 1 —s. Such a construction is possible since d(ug,x) +
Sf(up) < f(x)/s, so that there exists some u; € Bluo, f(uo)] satisfying f(u;) <tf(x),
and assuming that u, ..., u, have been obtained, we have

n

n—1 n
d(un,x) + fun) <Y d gy, ue) + flun) < flug) < 315 f(x) < éf(x%
=0 =0

= k=0

hence u, € B(x, f(x)/s) C X\ S, so that we can pick u,+1 € Bluy, f(uy)] satisfying
flupyr) < tf(uy). Since d(upi1,un) < f(uy) < 1"f(x), the sequence (u,) is a
Cauchy sequence, hence has a limit u in the closed ball Blx, f(x)/s]. Our closure
condition ensures that f(«) = 0. Thus u € B[x, f(x)/s]NS. O

The following concept will be convenient for using the preceding result in a
systematic way and for giving it an infinitesimal character. The terminology we
adopt reflects its role.
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Definition 1.112. Given a metric space (X,d) and f : X — R.., a function 67 : X —
R} is said to be a decrease index for f if for every x € X, r,c > 0, we have

f & >c¢ = inf < —cr, 1.26
ueg}x r) f ( ) =¢ ueg}xw)f(u) - f(X) " ( )
or equivalently,
flx) < iBr}f )f(u) +cr = JueB(x,r):6(u) <c. (1.27)
ucB(x,r

The following result is an easy but useful consequence of the definition of a
decrease index. Observe that the assumption is weaker than the one in implication
(1.26), since it bears on B(x,p) \ S and that the conclusion is somewhat stronger,
since it yields a minimizer. Here B(X,p) = X if p = -oo.

Theorem 1.113 (Decrease principle). Let X be a complete metric space, let f :
X — R be a function such that =" is closed at 0, and let S := f~'({0}). Let
o X — R, be a decrease index for f. Suppose there are x € domf, ¢ > 0, and

€ (¢ f(x),+oo] such that 8;(u) > c for all u € B(x,p)\ S. Then S is nonempty
and

d(x,8) <c 'f(x). (1.28)

In particular, if for some positive number c one has 0y(u) > c for allu € X \ S, and
if domf is nonempty, then S is nonempty and for all x € X inequality (1.28) holds.

Proof. If for all s € (0,c) one has B(x, f(x)/s) NS # &, then the result holds. Thus,
we consider the case that there exists some 5 € (0, ¢) such that B(x, f(x)/35)NS = &,
and using the fact that f(x)/c < p, we take s € [5,¢) satisfying f(x)/s < p. Let us
prove that f is s-steep at x. Given w € X \ S satisfying d(w,x) + f(w) < f(x)/s, for
all u € B(w, f(w)) we have

d(u,x) <d(u,w) +d(w,x) < f(w) +d(w,x) < f(x)/s <min(f(x)/5,p),

hence u € B(x,p)\ S and 8¢ () > ¢, so that by definition of a decrease index, taking
r:= f(w), we getinf f(B(w, f (w))) Ffw)—cf(w) < (1—s)f(w) and f is s-steep
at x. By Proposition 1.111, d(x,S) < f(x)/s, and the case B(x, f(x)/5)NS = & for
some 5 € (0,¢) is excluded. O

The preceding theorem is an existence result for the zero set of f. A variant
assumes existence but yields a useful localization property.

Theorem 1.114 (Local decrease principle). Let X be a complete metric space, let
f:X — Ry be such that " is closed at 0 on X, and letx € S := f~1({0}), ¢ > 0,
and p € (0,+oo]. Let 8¢ : X — Ry be a decrease index for f such that §;(u) > c for
allu € B(x,2p)\ S. Then for all x € B(X,p), relation (1.28) holds.



1.6 Decrease Principle, Error Bounds, and Metric Estimates 79

Proof. Given x € B(%,p) satisfying f(x) > cp, we obviously have d(x,S) <
¢ 1f(x), since d(x,S) < d(x,X) < p. Now, for x € B(X,p) satisfying f(x) < cp,
for u € B(x,p)\ S we have u € B(X,2p) \ S, hence d¢(u) > ¢, and Theorem 1.113
yields d(x,S) < ¢! f(x). O

The following examples borrow concepts that will be explained later on; thus,
they should be skipped in a first reading. We display them here just to show that the
notion of decrease index is versatile.

Example. If X is a Banach space and if f : X — R is Gateaux differentiable, setting
Or(x) == ||Df(x)|| gives a decrease index in view of Corollary 1.92.

Example. If X is a Banach space and if f : X — R.. is convex lower semicontin-
uous, setting 0¢(x) := d(0,df(x)) with the convention inf@ = oo, d f being the
Moreau—Rockafellar subdifferential of f studied in Chap. 3, gives a decrease index
in view of Corollary 1.93.

Example. If X is an open convex subset of a normed space and if f: X — R
is concave (and extended by —eo outside X), setting O (x) := sup{||x*|| : x* €
d(—f)(x)} yields a decrease index on X. In fact, given x € X, r, ¢ > 0 such that
f(x) <inf f(B(x,r))+ cr, taking ¢’ < ¢ satisfying f(x) < inf f(B(x,r)) 4+ ¢'r, for all
x* € d(—f)(x) one has

dr> sup (—H))—(—AE) = sup (¢w—x) =[],
weB(x,r) WEB(x,r)

hence ||x*|| < ¢’ and §¢(x) <’ <ec. O

We will see later that subdifferentials yield decrease indexes. In the general
framework of complete metric spaces, the concept of slope introduced by De Giorgi
et al. [263,265] is the main example of decrease index. We now present it.

Definition 1.115. For a function f : X — R.. finite at x € X, the slope (or strong
slope or calmness rate) of f at x is the function |V| (f) : X — R.. given by

[VI(f)(x) := limsup —(f(xc)l_ Fo)* :=inf  sup —(f(xc)l_f(v))+

V=X, VEX ('x7 V) £>OVGB(x,8)\{x} (X, V) ,

where the positive part ™ of an extended real number r is max(r,0).
The terminology “calmness rate” is justified by the following observation. If f is
calm at x € X in the sense that f(x) < +eo and for some r,¢ > 0 one has

Vv € B(x,r), fv) > f(x) —cd(v,x),

then one has |V|(f)(x) < c. In fact, |[V|(f)(x) is the infimum of the constants ¢ >
0 such that the preceding inequality holds for some r > (0. We observe that the
terms “calmness rate” or “downward slope” is more justified than the classical term
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“slope,” since the behavior of f on the superlevel set {u € X : f(u) > f(x)} is not
involved in the definition. Moreover, with the convention 0/0 = 0, one has

 timsup LI

V| (f)(x) = max (inf sup f =) 0)

€>0 veB(x,e)\{x} d(xv V) ’

We also note that |V|(f)(x) = 0 when x is a local minimizer of f, but the converse
does not hold, as the example of f : R — R given by f(t) = —t*> shows for x = 0.

The notation we use (that is a slight variant of the original notation) evokes the
following example and takes into account the fact that in general one cannot speak
of the gradient of f or of the derivative of f. Here we use notions from Chap. 2.

Example-Exercise. If f and g are finite at x and tangent at x in the sense that g(v) =
f(v)4o(d(v,x)), then |V|(g)(x) = V| (f)(x). Deduce from this property that if X is
anormed space and if f is Fréchet differentiable at x € X then |V| (f)(x) = ||[Df(x)]|.

Remark. Let §; be a decrease index for f and let 6 : X — R be such that 8 < 6r.
Then 5)'( is a decrease index for f.

This simple observation shows the versatility of the notion of decrease index.

Remark-Exercise. A function §; on X is a decrease index for f if and only if its
lower semicontinuous hull § given by §(x) := liminf,_, 8(v) is a decrease index
for f. [Hint: Use the fact that the infimum of the lower semicontinuous hull @ of a
function ¢ on an open subset B of X coincides with the infimum of ¢ on B.]

Taking into account the preceding two remarks, the next result states in essence
that the slope is somewhat the best decrease index: it is almost the largest one.

Proposition 1.116. For every bounded-below lower semicontinuous function f on
a complete metric space X, the slope of f is a decrease index. Moreover, for
every decrease index Oy for f, the lower semicontinuous hull &y of 8y satisfies

& < |VI(f).
This result is a consequence of a lemma that brings some additional information.

Lemma 1.117. Let X be a complete metric space and let f be a lower semi-
continuous function on the open ball B := B(x,r). Suppose inf f(B) > —e and
let B := f(x) —inf f(B). Then for all t € (0,1) there exists u € B|x,rt] such that
V() ) < B/rt, fu) < f(x).

Proof. We may suppose 3 < 4oo. We apply Theorem 1.88 to the restriction of f
to the closed ball B[x,rs], where s € (¢,1). Then there exists u € Bx, ] satisfying
f(u) < f(x) that is a minimizer of f(-) + (B/rt)d(-,u) on Bx,rs], hence on Blu, o]
for 6 :=r(s—1), so that

|V| (f)(l/l) — inf sup (f(u) —f(W))+ < sup (f(“) _f(w))+

P>0epupnfuy  AUW) T epuongy  dw)
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Proof of Proposition 1.116. Given x € X, r,c > 0 such that ¢r > f := f(x) —
inf f(B(x,r)), one picks ¢ € (0,1) such that cr > 3. Then the lemma yields some
u € Bx,1t] C B(x,r) such that |V|(f)(u) < B/rt < c, so that (1.27) is satisfied and
[V|(f) is a decrease index. .

Now let us prove that for every decrease index 8y of f and x € X one has &7 (x) <
[V (f)(x). Let ¢ > |V|(f)(x). Then for every b € (|V|(f)(x),c), there exists some
s > 0 such that

(f(x) = f(u)”
LtEB(le:lsI))\{x} d(“ax)

hence forall € (0,s) and all u € B(x,r), one has f(x) < f(u) +bd(u,x) < f(u)+br
and f(x) <inf f(B(x,r))+br <inf f(B(x,r))+ cr. Thus, by (1.27) there exists some

u € B(x,r) such that 8(u) < c. Thus 8¢ (x) = sup,¢ (g, infuep(xr) 8¢ (u) < c. Since ¢
is arbitrarily close to |V| (f)(x), we get 8/(x) < [V|(f)(x) . O

< b;

It will be useful to dispose of a parameterized version of the decrease principle.
The novelty here lies in the (inward) continuous dependence of the solution set on
the parameter w.

Theorem 1.118 (Parameterized decrease principle). Let W be a topological
space and let X be a complete metric space. Let f : W x X — R and let (w,X) €
S:={(w,x) €W x X : f(w,x) = 0}. For eachw € W let §,,: X — R be a decrease
index for f,, := f(w,-) and let S(w) := f,,1({0}). Suppose there exist c,r >0 and a
neighborhood U of w such that

(a) 6,(x) > cforall (wx) € (UxB(x,r))\S;
(b) The multimap w = epif,, is inward continuous at (w, (%,0));
(c) Forallw € U the function f,, is such that f,; is closed at 0.

Then the multimap S(-) is inward continuous at (w,X). Moreover, for all s € (0,r/2)
there exists a neighborhood V of W such that for all w € V the set S(w) is nonempty
and

Vx € B(%,s), d(x,S(w)) < c ' f(wx). (1.29)

Assumption (b) can be phrased in terms of upper epi-limits. It is rather mild: it is
satisfied whenever f(-,X) is outward continuous at w.

Proof. Let U,c,r be as in the assumptions. Assumption (b) means that g, :=
2(c+ 1)d((x,0),epif,,) has limit 0 as w — 0. Assumption (c) implies that X € S(w)
forall w € UNW, with Wy := {w € W : ¢, = 0}. Thus, to prove that S(-) is inward
continuous at (w,X), it suffices to find some neighborhood V C U of w such that
d(x,S(w)) <2gq, forallw € VNW,, where W, := W\ W,. Given s € (0,r/2), there
is a neighborhood V of w such that ¢,, < min(s, /2 —s) for all w € V. Since ¢,, > 0
for w € Wy, one can pick x,, € B(%,s) and r,, € (0,q,) such that d(X,x,) < ry,
f(w,x,) < cr,. For every w € VW, one has B(x,,s) C B(X,r), so that assumption
(a) ensures that one has 6, (u) > ¢ for all u € B(x,rw) \ S(w). It follows from
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Theorem 1.113, in which we replace f by f,, and set x := x,,, p = s, that S(w)
is nonempty and

d(-xW7S(W)) < Cilf(wuxw) <Try.

That proves that d(x,S(w)) < 2r, < 2q,, and that S(-) is inward continuous at (W,X).

Now let us prove (1.29). Assume, in view of a contradiction, that there exist w €
V, x € B(x,s) such that f(w,x) < cd(x,S(w)). Setting t := d(x,S(w)) > 0, we have
t <d(x,X)+d(x,S(w)) <s+2r,, hence d(x,X) +1 < 25+ 2r, < r; thus B(x,t) C
B(%,r) and 8, (1) > ¢ for all u € B(x,t) \ S(w). Since fi,(x) < ct, applying again
Theorem 1.113, we get d(x,S(w)) < ¢! fi,(x) < ¢, a contradiction. O

Exercises

1. (a) Prove Lemma 1.109.
(b) Detect relationships between the best y and u of that lemma.

2. Prove the observation following Definition 1.115 above.

3. Deduce from Proposition 1.110 the following statement [53, Theorem 1.3].
Let (X,d) be a complete metric space, let o, € R, and let f: X — R. be
lower semicontinuous such that f~!'((—es,8]) # @ and such that for all x €
F (e, B)) there exists y € f~!([er,+20)) \ {x} satisfying f(y) +d(x,y) < f(x).
Then f~!((—e,a]) # @ and d(x, f'((—,a])) < (f(x) — )" for all x €
fY((=e=,B)). [Hint: Givenx € f~!((—eo,B)), pick y € (f(x), 8) and apply Propo-
sition 1.110 to the function g given by g(u) := (f(u) — )" for u € f=1((—oo,7]),
8(u) := oo foru € f=((y,+e)).]

4. The definition of a decrease index does not lead to good calculus rules for sums
or suprema. Prove, however, that if 6y and , are decrease indexes for f and g
respectively, then inf(Jy, 8;) is a decrease index for & := min(f, g).

5. Let h: X — Y be a surjective map between two metric spaces such that for all
r>0,y €Y onehas B(y,r) = Uyep-1(y) H(B(x,r)). Let g : ¥ — R and f 1= goh.

(a) Show that if 8y is a decrease index for f, then , given by &, (y) := inf{Jy(x) :
x € h™!(y)} is a decrease index for g.

(b) Prove that the condition on £ is satisfied whenever for every x,x’ € X,y € Y with
h(x) = h(x') one has d(x,h~' (y)) = d(x',h~'(y)). Show that the latter condition
holds whenever Y is the quotient of X by the action of a group of isometries on
X, in particular, when Y is the quotient of a normed space by a closed linear
subspace.

6. Let 6/ be a decrease index for f : X — R... Check that every function 5} X =
R, minorizing 8y is a decrease index for f. In particular, Sf given by S_f(x) =
liminf, ., 07(v) is a decrease index for f.
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7. Show by modifying the function fy : R — R given by fy(x) = — |x| in such a way
that there exists a sequence of local minimizers of the new function f that converges
to 0, that the slope of f is not necessarily a lower semicontinuous decrease index.

8. Deduce Corollaries 1.92 and 1.93 from Proposition 1.116. For this purpose, show
that if f is Géteaux differentiable at u, then || f'(u)|| < |V|(f)(u), whereas if f is
convex and continuous at u, then inf{||u*| : u* € df(u)} <|V|(f)(u). [Hint: Use
the Hahn—Banach theorem.]

9. Given a complete metric space (X,d) and a lower semicontinuous function
f:X =Ry, let S= f710), let £: X — R be given by £(x) := sup{(f(x) —
Fw))/d(w,x):we X\ {x}},and c¢(x) := inf{{(x') : ¥ € [f < f(x)]NB(x,d(x,S))}.
Use the Ekeland principle to show that ¢(x)d(x,S) < f(x) for all x € X (with the
convention 0.(+4e0) := 0). (See [752].)

1.6.2 Supplement: A Palais—Smale Condition

Adding a convenient compactness condition to the use of minimization principles,
one gets an existence theorem. This condition is a variant of the original Palais—
Smale condition that is fulfilled in a number of concrete problems. It is as follows.

Definition 1.119. A function f : X — R.. on a metric space X is said to satisfy the
Palais-Smale condition at level { € R, denoted by (PS),, if every sequence (x,) in
X such that (f(x,)) = £, (V| (f)(x,)) — 0 has a convergent subsequence.

When X is a normed space and f is differentiable, the assumption (| V| (f)(x,)) —
0 can be replaced with the assumption (f”(x,)) — 0; when f is convex, it can be
replaced with the assumption (d(0,df(x,))) — 0. This condition can also be given
for functions on Riemannian or Finslerian manifolds. It can be used for critical
values of f that are not necessarily the infimum of f.

Proposition 1.120. Let f : X — R. be a bounded-below lower semicontinuous
Sfunction on a complete metric space X and let { := inf f(X) € R. If f satisfies the
Palais—Smale condition (PSy) at level {, then f attains its infimum.

Proof. Let (w,) be a minimizing sequence of f: setting &, := f(w,) — ¢ one has
(e,) — 0. Taking r =2, =1/2, x = w,, in Lemma 1.117, we can find u, € X such
that |V| (f)(un) < &, f(un) < f(wn). Then (f(u,)) — £ and condition (PS) yields a
limit point u of (uy,). Since f is lower semicontinuous, we get f(«) < liminf f(u,) =
£, hence f(u) = ¢. O

Exercise. Observe that instead of assuming that f is lower semicontinuous, one
may suppose that g := f — £ is such that g~ is closed at 0.
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1.6.3 Penalization Methods

The question of dealing with constraints is a delicate one in tackling minimization
problems (and with real-life problems, too!). Several possibilities exist to eliminate
constraints. The first one is a theoretical means. It consists in replacing the objective
function f : X — Re := RU{+eo} in the problem with constraint

(22) minimize f(x), x €A,

where A is some admissible or feasible set, by the modified function fj := f+ 14
given by

fax):=f)ifx €A, f1:=—+oifx€X\A,

that takes into account the admissible set A through the indicator function 14 of A
given by 14(x) := 0 if x € A, 14(x) := +oo if x € X \ A. Although this trick is of
mathematical interest, it is not of great practical use, since the function fy is wildly
nonsmooth in general and difficult to handle (see the following chapters, however).
When the admissible set is defined by implicit constraints such as

A={xeX: g(x)=0, gi(x) <0,e€E, icl}, (1.30)

where I and E are finite sets and g; : X — R for j € IUE, the use of multipliers
has proved to be a tool of prominent importance since the work of Lagrange in the
eighteenth century. Then the objective is changed into a combination of f and the
constraint functions:
o=+ Uege+ D Aigi,
ecE i€l

where A; € Ry, u, € R. More generally, when A is the inverse image under some
map g : X — Z of some subset C (for instance a closed convex cone) of a normed
space Z,

A={xeX:gx)eC}, (1.31)

the function ¢, := f +yo g, where y € Z*, known as the Lagrangian function of the
problem, plays a key role both for optimality conditions and for algorithms.

A third idea (bearing connections with the other two devices) consists in
introducing some penalty terms, replacing the objective f by the penalized objective

pro=f4rY g | +rd> 8

ecE icl

where t* := max(,0) and r € Ry is some well-chosen rate of penalization, or

pri=f+rde(g())
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in the case A = g~ !(C), where dc(z) := d(z,C) := inf{d(z,w) : w € C} for z € Z.
One may expect that by taking r large enough, the value of the infimum of this
penalized objective on the whole space will converge to the value of the constrained
problem (&?). In general, one has to replace r by an infinite sequence (r,) — oo,
so that one has to solve a sequence of unconstrained problems. In some favorable
cases a single penalized problem suffices, provided the penalization constant r is
large enough. A simple case is presented in the following result that is of frequent
use in optimization theory and in nonsmooth analysis.

Proposition 1.121 (Penalization lemma). Let A be a nonempty subset of a metric
space X and let f : X — R be a Lipschitzian function with rate r. Then for every
s>,

inf £ (x) = inf (f(x) + sda(x)). (1.32)

XEA

Moreover, X € A is a minimizer of f on A if and only if X is a minimizer of fs :=
f+sdyon X. If Ais closed and if s > r, every minimizer z of fs belongs to A.

Replacing X by a neighborhood of X, we get a similar statement in terms of local
minimizers.

Proof. Since f; = f on A, we have m := inf f(A) > inff(X). If we had strict
inequality we could find x € X such that f;(x) < m. Then we would have sdj (x) <
m — f(x), so that we could pick X' € A such that sd(x,x’) < m — f(x). Since f
is Lipschitzian with rate r < s, we would get f(x') < f(x) +sd(x,x') < m, a
contradiction. The second assertion follows immediately.

Suppose now that A is closed and that a minimizer z of f; belongs to X \ A for
some s > r. Then d4(z) is positive, so that by the relations inf f(A) = inf f;(X) =
f(z) +sda(2),

rda(z) < sda(z) =inff(A) — f(2),

one can find a € A such that rd(a,z) < inf f(A) — f(z), a contradiction to the
relations inf f(A) = inf f,(X) < f(z) + rd(a,z). O

When X is a normed space, we observe that the new function f; is nonsmooth
in general. This example is one of the main incentives to the study of nonsmooth
analysis. We also note that when the admissible subset A is defined by equations or
inequalities, the function dy is not explicitly given and may be difficult to compute.
For instance, if A is given by (1.30), it would be preferable to substitute for f; the
function

psixe f(x)+s Y [ge(x)| +s Y gix) "t
ecE i€l
mentioned above. This function is still nonsmooth, but it is explicitly determined,
and its nonsmoothness is “reasonable” if the g;’s are smooth. More generally, if
A =g !(C), where g : X — Z is some mapping with values in a metric space Z and
C is a closed nonempty subset of Z, as in (1.31), one would like to substitute for f;
the function

x> f(x) + sdc(g(x))
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for some appropriate constant s > 0. When C is simple enough, for instance when
C is the negative (resp. positive) cone of some Euclidean space or some Banach
lattice, dc may be rather simple: under appropriate assumptions one has d¢(z) =
lz7|| (resp. dc(z) = ||z ||), where z" := max(z,0), z~ := (—z)". Quite often z" is
easy to compute (see the exercises below).

In the following section we will consider the case that the mapping g is metrically
regular with respect to C around some point ¥ in the sense that it satisfies an
inequality of the form

d(x,g'(C)) < cd(g(x),C)

on some neighborhood U of X € X. Such an inequality ensures that we can pass from
f4sdato f+esd(g(-),C) as expected. Other reasons justify the interest of such an
estimate (calculus of tangent and normal cones, optimality conditions, etc.).

Exercises

1. Characterize the norms on R” for which d¢(z) = ||z7]||, C being the negative
orthant of R” and z* := (z;") for z := (z;).

2. Show that if E and I are finite sets and if C := {0} x R C Z := RF x R/, then
for the usual norms on Z, one has

dc(z) = ||(ZE721+)H forz = (zg,21) € RE xR/,

sothat f+rdcog=pr:=f+rYic;8 +rYeck |8l

3. (a) Let T be a compact topological space and let C be the negative cone of
Z :=C(T). Show that dc(z) = ||z || with 2 (¢) := (z(z))*.
(b) Prove the same result when 7 is a measure space and Z = L,(T') for some
p € [1,°0] endowed with its usual norm.

4. (Penalization algorithms) Consider the problem
Minimize f(x) subject to x € A,

where f : X — R is lower semicontinuous and A is a closed subset of X. Suppose
there exists a continuous function ¢ : X — R such that A = ¢~'(0). Given an
increasing sequence (r,) of positive numbers, let x,, be a minimizer of the penalized
function p,, := f 4 rnq. Show that p,(x,) < pus1(xni1)s ¢(xni1) < q(xn), flxn) <
S (xp+1) and that f(x,) < pa(x,) <inff(A) for all n. Prove that every cluster point
of the sequence (x,) is a solution of the given problem whenever (r,) — oo.

5. (Debreu’slemma) Let A : X — Y be a linear map between two Euclidean spaces
and let Q : X — X be such that (Qx,x) > 0 for all x € KerA \ {0}. Prove that there
exists ¢ > 0 such that (Qx, x) 4 c[JAx||> > 0 for all x € X \ {0}.
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1.6.4 Robust and Stabilized Infima

When one minimizes a composite function of the form ho g, where g: X — Y isa
map between two metric spaces X, Y and  : Y — R.., one has to admit that some
inaccuracies may occur in computing the value of 4 at g(x). Similarly, if Z is a
subset of Y that is not easy to determine, the computation of inf(Z) may be eased
by replacing the inclusion y € Z by the inclusiony € Zg :={y €Y :d(y,Z) < 6} or
y€B(Z,0):={yeY :d(y,Z) <8} for some small 6 > 0. Thus, one is led to the
following concept, in which f : X — R and &, g are as above.

Definition 1.122. The stabilized infimum of h: Y — R on the subset Z of Y is

Azh:= lim infh(Zs) = supinf{h(y):y €Y, d(y,Z) < 8}.
50+ 8>0

The stabilized infimum of the composed function ko g, with g and & as above, is

Ngh = Ng(x)h = gu%inf{h(y) 1d(y,8(X)) < d}.
>

The stabilized infimum of the sum fi 4 ---+ f; of a finite family (f1,..., f;) of
functions on X is

A(fis- fi) = (S;llginf{fl (1) 4+ fie(x) - diam(xy ... x) < 8}
>

The stabilized infimum of the mixed function f+hogis

Ng(f,h) :=supinf{f(x)+h(y) :w,xeX, yeY, dwx) <6, d(y,g(w)) <3}
>0

The infimum infA(Z) will be called robust if it is equal to the stabilized infimum
Azh. Then a minimizer of & on Z will be called a robust minimizer. A similar
terminology will be used in the other cases. The concept for sums can be given
for every operation on a family of k functions.

Clearly, one has the inequalities

Azh<infh(Z),  Agh<infh(g(X),  A(fi,. fi) Sinf(fi+--+ fi).

These inequalities may be strict, as simple examples show.

Example. Let X := R, Y :=R?, i, g being given by h(r,s) = rs, g(x) = (x,0). Then
Ngh = —oo, while infho g = 0.
We shall soon present criteria for equality. Before that, let us relate the different

concepts of the preceding definition. What follows shows that the last concept
encompasses the other ones but can be reduced to each of them. Of course,
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Ngh = Ng(f,h) with f := 0. Moreover, as is easily seen, Ag(f,h) = A(fopx,ho
py,1lG), where px : X XY — X, py : X XY — Y are the canonical projections
and 1 is the indicator function of the graph G C X XY of g. In particular,
Ngh = /\(hopy, 16) = NG J, with j := ho py. Also, /\g(f, h) = Ny g) (f xh).

We have already observed that Agh := Agx)h. Conversely, if Z is a subset of
Y, denoting by g : Z — Y the canonical injection, we have Azh = Agh. Also, we
obviously have Azh = A(h,1z).

Given a family (fi,..., f;) of functions on X, denoting by g : X — Y := X the
diagonal map defined by g(x) := (x,...,x), by & : ¥ — R.. the function given by
h(xt,. . x0) i= f1(x1) +-- -+ fi(xx), setting Z := A := g(X), and endowing X* with
the metric d := d.., for all y := (x1,...,x;) € X¥ let us check the inequalities

1
—diam(xy,...,x) <d(y,g(X)) < diam(xy,...,x;) := max d(x;,x;).
2 1<i, j<k

The second one is obvious, and for all r > d(y,g(X)) there exists some x € X such
that d(x,x;) < rfori e Ny :={l,...,k}, sothat d(x;,x;) < 2r forall i, j € N;. Thus,

Afis-- s fo) = Agh = Azh. (1.33)

When Z is a singleton {z}, Azh is the value h(z) := liminfy_,; 4(y) at z of the
lower semicontinuous hull % of A. This simple observation leads us to consider
criteria involving semicontinuity concepts.

In the following statement we say that i : Y — R., is uniformly lower semicontin-
uous around a subset Z of Y if for every € > 0, there exists some 6 > 0 such that for
ally € Y\ Z, z € Z satisfying d(y,z) < & one has h(y) > h(z)—€, where r—€ :=r—¢€
forreR, reg:= 1/¢ for r = 4-oo. In the sequel, we simply write r — €.

Lemma 1.123. (a) If h is uniformly lower semicontinuous around Z, then \zh =

infh(Z).

(b) If h is lower semicontinuous at each point of Z and if Z is compact, then \zh =
infh(Z).

(c) If (f1,---,fx) is a finite family of lower semicontinuous functions that are

bounded below and if fi is inf-compact in the sense that its sublevel sets are
compact, then A\(f1,..., fi) = infyex (f1(x) + -+ fr(x)).

Proof. (a) The relation Azh = infh(Z) is obvious if Azh = +eo. Thus, it suffices to
prove that for every s > r > Azh one has s > infh(Z). Lete € (0,5 —r) with 1 /e > r
and let 8 > 0 be such that h(y) > h(z) — € whenever y € Y\ Z, z € ZNB(y, ).
By definition of Azh one has inf/i(Zg) < r, so that there exist some y €Y,z € Z
satisfying h(y) < r,d(y,z) < 6.Ify € Z, one has infh(Z) < h(y) <s.Ify € Y\ Z, one
cannot have /i(z) = +eo, since h(y) <r < 1/e;thus h(z) <h(y)+€ <h(y)+s—r<s,
whence infh(Z) < s.
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(b) We may suppose inf/i(Z) > —oo. Let us show that for all r < infh(Z) we
can find some & > 0 such that r < infh(Zg). For all z € Z there exists an open
neighborhood V; of z in Y such that 4(y) > r for all y € V.. Since the union V of
the family (V;).cz is an open neighborhood of Z, one can find some & > 0 such that
Zs C V.1t is the required §.

(c) We may suppose A(f1,...,fr) < oo, the result being obvious otherwise.
For i € Ny let (xi), be a sequence of X such that (diam(xy,,...,x,)) — 0
and (fi(x10) + -+ fi(xkn)) = A(f1, ..., fi). Since fa,..., fi are bounded below,
(xl‘,n),, is contained in some sublevel set of fi. This sequence has a convergent
subsequence (x| p(,))s- The sequences (x; ,(,))» have the same limit X. By lower
semicontinuity, we get fi (%) +--- + fi(X) = A(f1,..., fi)- O

Given a family (f1,..., fi) of functions on X with values in R., the equality
A(fis---, fx) = infx (fi + -+ + fx) means that the behaviors of the functions
fi,-.., fr are not too antagonistic, at least for what concerns minimization. In
the next obvious lemma we consider a collective behavior that is not bound to
minimization.

Lemma 1.124. Let (f1,...,fr) be a (lower) coherent family of functions on X in
the sense that for every sequences (X1 )n, ..., (Xkn)n satisfying (d(Xin,Xjn))n — 0
for i, j € Ny there exist sequences (&), — 0, (x,), such that (d(x,,%;,))n — 0 for
i€ Ny andforalln e N,

fl (xn) + - "+fk(xn) —& < fl (x17n) +- "+fk(xk,n)- (1.34)

Then A(f1,...,fr) =inf{fi(x) + -+ fr(x) :x € X}.

This equality also holds if (f1,...,fr) is quasicoherent in the sense that for all
sequences (X1 p)n- .., (Xkn)n satisfying (diam{x;, : i € Ni}), — O there exist an
infinite subset N of N and sequences (&,) — 0, (x,) such that (1.34) holds for all
neN.

Proof. Let f:= fi +---+ fi and let h : X¥ — R.. be defined for y := (yi,...,v)
by h(y) := fi(y1) +--- + fi(yx) as in relation (1.33). Let A be the diagonal of
X*. We may suppose A(fi,...,fi) < +oo, so that infi(B(A,8)) < +eo for all
6 > 0. Let us first suppose there exists some 6 > 0 such that infi(B(A,5)) > —eo.
Given a sequence (8,) — 04 in (0,6), let y, € B(A,8,) be such that h(y,) <
infh(B(A, 8,))+ 6,. The quasicoherence condition yields sequences (x,), (&) — 0
and an infinite subset N of N such that A(y,) > f(x,) — &, for all n € N. It follows
that A(f1,...,fk) = sup,eyinfh(B(A,8,)) > infuen(f(xn) — € — On) > inf f(X).
When infh(B(A,8)) = —eo for all § > 0, given a sequence (J,) — 04, we pick
yn € B(A,d,) such that h(y,) < —n. Using the quasicoherence condition as above,
we get sequences (x,), (€,) — 04 and an infinite subset N of N such that h(y,) >
f(x,) — &, for all n € N. Then we get inf f(X) < inf, f(x,) = —co = A(f1,-.-, fi)s
and equality holds again. O
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Coherence carries a localization condition for the sequence (x;) of (1.34), since
it requires (d(x,,x;,)) — O for i € Nj; this requirement is not used in the preceding
proof but will play a role later on.

Lemma 1.125. Let (f1,..., fx) be a coherent family of functions on X and let fi i
be uniformly continuous. Then (fi,..., fi+1) is a coherent family.

Proof. Given sequences (X1,),...,(Xgt1,) satisfying (d(xi,,xj,)) — 0 for i, €
Ni+1, picking (&,) — 0, (x,) such that (d(x,,x;,)) — 0 for i € N; and (1.34) holds,
we note that d(xn,kaan) < d(x,,,xkl,,) + d(xkﬂ,xkﬂm) — 0, so that (fk+l (Xk+17,,) -
Srr1(x,)) — 0, and relation (1.34) can be extended to (f1,..., fii1)- O

The preceding lemmas and an induction entail the following proposition.

Proposition 1.126. If (fo,...,fx) is a finite family of functions on X that are
uniformly continuous except for fo, then (fo,..., fi) is coherent.

The notion of coherence can be localized and then characterized. We say that the
family (f1,..., /) is coherent around some X € X if there exists some neighborhood
V of ¥ such that the restriction of (fi,..., f;) to V is coherent.

Proposition 1.127 [526, Prop. 2.3]. A family (f1,...,fx) of lower semicontinuous
Sfunctions with values in R, is coherent around some X € X at which these functions
are finite if and only if there exist a neighborhoodV of X and a modulus (L such that
forallx €V and (t1,...,t;) € R, for f:= fi +---+ fi, one has

d((x,ty + -+ 1),epif) < u(d((x,t1),epifi)+---+d((x,5),epifi)). (1.35)

Proof. Suppose that for some neighborhood V of X and some modulus u, (1.35)
holds for every x € V, 1; € R. Let (x1,),..., (%) be sequences of V satisfying
(d(Xin,Xxjn)) = 0 for i,j € Ny. Let M := {n € N : 3i € Ny fi(xi) = +oo}. For
any sequence (&,) — 04 and for every n € M we can take x, = ¥ in (1.34). Thus,
dropping M, we may assume that #;, := fi(x;,) < +eo for all i,n. Let w, 1= xy .
Then (d(Wn,Xin)) — 0 and d((Wn, i), epi fi) < d(wn,xi,) for i € N;. Thus, relation
(1.35) shows that (d((Wn,t1n + -+ +1kn),epif)) — 0. Thus, there exists some
(Xn, 1) € epi f such that (d(x,,wn)) — 0, (&) := ([tin+ - +txn —1a]) = 0. Then

fl (xl,n) +--- "l‘fk(ka) =11n +--- +tk7n >ty — & > f(xn) — &,
and the family (f7,..., fi) is coherent on V.

Conversely, let (f1,..., fx) be a family that is coherent on some neighborhood V
of X. Let r > 0 be such that B(X,2r) C V. For s € P let

w(s) :=sup {d((x,izk‘iti),epif) (X EB(X,r), ty... It ER,iﬁ‘id((x,ti),epiﬁ) gs}
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and p£(0) = 0. Since u is nondecreasing, it remains to check that yt is continuous at
0.Let (s,) — 01in (0,r) with u(s,) > 0 for all n and let u, € B(X,r), tin,...tlxn €R
satisfying d((un,t1,),epi fi) + - +d((un,txn),epifr) < s, and

d((un,t1 0+ +1tin),epi f) > qn = min(n, u(s,)/2)

(gn is chosen to take into account the case (L(s;,) = +o0). Then for i € Ny, there exist
(x,-,n,tl{n) € epi fi such that d(xjn,un) < sn, |ti/7n —tin| < sy. Since x;, € B(X,2r) C
V and d(xin,xj.) < 2s,, the coherence of the family (fi,...,f;) yields some
sequences (&,) — 0, (x,) in B(X,r) such that (d(x,,X;,)) — 0 for i € Ny and

Firlxn) + -+ filxien) > fi(x) + -+ filxn) — &
Since t; , > tl.’m —$n > fi(Xin) — Sn, We get
I + - +tk7n > f(xn) — &, — ks,

Since d(un,x,) < d(up,xin) + d(xin,x,), which has limit 0, our choice of uy, t;,
yields

qn < d((”nutl,n+ tee +tk7n)uepif) < d(”naxn) + (f(xn) - (tl,n+ : "+tk,n))+
< d(up,Xn) + &+ ksy.

Thus g, = p(s,)/2 for n large, (1 (s,)) — 0, and y is a modulus. O
The preceding characterization incites to introduce a case of particular interest.

Definition 1.128 (Ioffe). A family (fi,...,f;) of lower semicontinuous functions
on X with sum f is said to be linearly coherent around some X € X, or to satisfy the
linear metric qualification condition around ¥, if there exist ¢ > 0, p > 0 such that
forall x € B(%,p), (t1,...,4) € R¥ relation (1.35) holds with u(r) := cr forr € R,
i.e., one has

d((x,r1+---+1),epif) <cd((x,t1),epifi)+ - +cd((x,1),epifi).  (1.36)

An analogue of Proposition 1.126 can be given.

Proposition 1.129. (a) Every family (fi,...,fx) of lower semicontinuous func-
tions on X all but one of which are locally Lipschitzian around X is linearly
coherent.

(b) If (fi1,-..,fx) is a family of lower semicontinuous functions that is linearly
coherent around X € X and if fy1 is Lipschitzian around X, then (fi,..., fi+1)
is linearly coherent around X.

Proof. Tt suffices to prove that if f is lower semicontinuous and if g is Lipschitzian
around X, then (f,g) is linearly coherent around X. Then assertions (a) and (b) follow
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by induction on k. Since (1.36) is preserved when one changes the norm in X X R to
an equivalent one, we may suppose the Lipschitz rate of g is 1 on some ball B(x, p).
Let F, G, H be the epigraphs of f,g, and h := f + g respectively and let x € B(%,p),
s,t € R. Given € > 0, let (u,r) € F satisfying ||u — x||+ |r — 5| < dFp(x,s) + €. When
g(x) >1t, we have |g(x) — 1] = (g(x) —1) " =dg(x,1), and since (u,r+g(u)) € H and

[l = x|+ [(r+ g () = (s +0)[ < [lu = x| + |r = 5| + [g(u) — g(x)[ + [(x) — 1]
<2Ju—xl[+|r—s|+[g(x) — 1],

we getdy (x,s+1) <2dp(x,s)+2€+dg(x,t). When g(x) <t we have (u,r+ g(u) +
t—g(x)) € H and

[l = x| +[(r+g(u) +1—g(x)) = (s +1)[ < [Ju = x[| + [r = 5| + g () — g (x)]
<2||lu—x|| + |r—s| < 2dp(x,s) + 2¢.

Thus, in both cases we have dp (x,s+1) < 2dp(x,s) +2¢& + dg(x,t). Since € > 0 is
arbitrary, we get dy (x,s +1) < 2dr(x,s) + dg(x,1). O

1.6.5 Links Between Penalization and Robust Infima

Now let us point out the links of the preceding concepts with penalization. This
can be done for each of the various cases of stabilized infimum. In view of the
passages described above, we limit our study to the case of a composition ho g,
where g: X — Y and i : Y — R... In order to get some flexibility, we make use of a
function k : ¥ x ¥ — R := [0, +oo] such that

k(y,y') = 0 <= d(y,y') = 0. (1.37)

We call such a function a forcing bifunction. For instance, one may choose k := d”
with p > 0 or, more generally, k := p od, where u : R, — R is continuous at
0 with u(0) = 0 and firm (i.e., (t,) — 0 whenever (i(,,)) — 0). Given ¢ > 0, we
define the penalized infimum of ho g by

me = inf{h(y) + ck(g(x),y) : (x,y) €X XY},  m:=supme.
>0

Then ¢ — m, is clearly nondecreasing. One may have m, = —eo for all ¢ > 0 while
Agh is finite. This fact occurs for X := {0} C ¥ := R, g(0) := 0, h(y) := —?,
k(y,y") := |y —y'|; note that it does not occur when k is given by k(y,y') = (y —y')?,
so that it is of interest to choose k appropriately. When m, > —co for at least one
¢ > 0, one has a remarkable relationship between m := sup,.. o m. and Agh. It shows
that m does not depend on the choice of k among those ensuring m > —oo.
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Proposition 1.130. One always has m < Agh. If m > —eo, equality holds.

Proof. Let us first prove that for all ¢ > 0 we have m. < Agh. We may suppose
that Agh < +oeo. Let s > r > Agh. By definition of Agh, for all 6 > 0, there exist
some x € X, y € Y satisfying d(g(x),y) < 6 and i(y) < r. Taking 6 > 0 such that
k(y,y") <n:=c (s—r) whend(y,y") < 8, we get some (x,y) € X x ¥ such that
h(y) +ck(y,g(x)) < r+cn =s, hence m. < s and, s being arbitrarily close to Agh,
me < Agh. Thus m :=sup,.ome < Agh.

Now let us show that Agh < m when m > —co. We may suppose that m < +oo. Let
b > 0 be such that my, > —co and let r > m, § > 0 be given. Let o > 0 be such that
d(y,y') < 6 whenevery,y' €Y satisfy k(y,y’) < a. Now we pick ¢ > b large enough
that (c —b)o > r —my,. Since r > m > m,, we can find (x,y) € X x Y such that
h(y) + ck(g(x),y) < r. Since my < h(y) + bk(g(x),y), we have (¢ — b)k(g(x),y) <
r—my, hence k(g(x),y) < a and d(g(x),y) < 8. Thus

inf{a(y') :) €Y, d(y,8(X)) <8} <h(y)<r.

Taking the supremum over § > 0, we get Agh < r, hence Ngh < m. [l

A similar result holds for a sum. We leave the proof as an exercise. This time,
given a family (f,..., fx) of functions on X and a forcing bifunction kx : X x X —
R, we set m := sup_, m, with

k
m, ::inf{fl(xl)—i—----f-fk(xk)"’C N kx (xiyxj) ¢ (x, e x) eXk}.
ij=1

Proposition 1.131. One always has m < A(f1,...,fx). If the functions f; are
bounded below, or, more generally, if m > —oo, equality holds.

Penalization methods are not limited to convergence of values. They also bear on
convergence of approximate minimizers, as we are going to show for the minimiza-
tion of a sum of functions and then for the minimization of a composite function.
For the sake of simplicity, we slightly change the notation of Proposition 1.131,
considering two functions f, g : X — R.. and setting, forc € R,

pe(x,y) == f(x) +8(y) + ckx (x,y).

Proposition 1.132. Let f,g be bounded below, or more generally, let them be such
that my, := inf pp(X X X) > —oo for some b > 0. Suppose N(f,g) < . Then given a
sequence (&) — O, if (Xy,yn) is an €,-minimizer of py, one has (d(xn,y,)) — 0 as
n — oo,

Proof. Since ky is a forcing function, the result stems from the inequalities

A(f;8) + & > infpy+ & > f(xn) + 8(Vn) + nkx (X, yn) = my + (n— b)kx (X, n)-
O
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Similar results hold for the minimization of the function f 4+ ho g, where f :
X -+ R, g: X — Y is continuous, & : ¥ — R, X,Y being two metric spaces.
Moreover, such results can be localized. Given forcing bifunctions ky and ky on
X and Y respectively and a robust minimizer X of f +ho g, let us set, forr € R,

pe(x,y) == f(x) +h(y) +thy (g(x),y) + kx (x,%), (x,y) €X xY.

Theorem 1.133. Let f,h,g, p: be as above and let X be a robust minimizer of f +
hog with (f +hog)(X) finite. Suppose g is continuous at X and, for some b > 0,
my, :=1inf pp(X X Y) > —eo. Given a sequence (&,) — 0., every sequence ((Xu,yn))n
such that (xn,yy) is an €,-minimizer of p, converges to (%,y) := (x,8(%)).

Proof. Letm := f(X)+ h(¥). Since (x,,y,) is an &,-minimizer of p,, we have
M+ €y = My + & = Pp(Xn,yn) = mp+ (n—b)ky(g(xn), ),

so that (r,) := (d(g(xn),yn)) — 0. For r € R4, let

u(r) = inf{f(x) + h(y) : d(g(x),y) <r}.
Since X is a robust minimizer, we have (L (r,)) = m:= f(x) + h(y),

m+ & > My + &y > pu(Xn,yn) > f(xXn) +h(yn) +kx (X0, %) > W (ry) + kx (X0, %)

Thus (kx (xn,X)) — 0, so that (x,) — X, (g(x,)) — g(%) and (y,) — g(%). O

Exercises

1. Givenh:Y — R. and Z C Y, show that Azh = infh(Z) if for every € > 0, there
exists some 0 > 0 such that for all y € Y satisfying d(y,Z) < 0, there exists some
z € Z satisfying h(z) < h(y) + €.

2. Using the preceding exercise, show that if Z is compact and /2 : ¥ — R.. is lower
semicontinuous and finite at each point of Z, then Azh = infh(Z). [Hint: Given
€>0,forzeZletO,:={y €Y :h(y) > h(z) — €}; then using the Lebesgue lemma,
find 6 > 0 such that for every w € Z there exists some z € Z such that B(w, ) C O;.]

3. Show that if Z is compact, if & is lower semicontinuous, and if the restriction of
h to Z is finite and continuous, then /4 is uniformly lower semicontinuous around Z.
[Hint: Use the Lebesgue lemma as in the preceding exercise and use the fact that the
restriction of % to Z is uniformly continuous.]

4. Prove Proposition 1.131 or deduce it from Proposition 1.130.
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5. Give a direct proof of the fact thatif {fi,..., fy_1} is a finite family of functions
on X that are uniformly continuous, then for every lower semicontinuous function
S, the family (f1,. .., fi) is coherent, so that A(f1,..., fi) =inf{fi (x)+ -+ fi(x):
xeX}.

6. Show that if u is a modulus, then v given by v(s) := sup{u(r) : r € [0,s]} is a
nondecreasing modulus.

7. Show thatif f:= hog and if Agh is finite, then there exists a modulus ¢ such that
for k := pLod, one has m := sup..ym. = Agh. [Hint: Take p(r) = r for r € [0, 5],
W (r) := +oo for r > §, where 6 > 0 is such that inf{a(y) : d(y,g(X)) < 6} > —oo.]

1.6.6 Metric Regularity, Lipschitz Behavior, and Openness

The notion of open mapping is so simple and so natural that it is often unduly taken
in place of continuity by beginners in topology. A classical use of the notion of open
map is the Banach—Schauder open mapping theorem, which we saw in Sect. 1.5.6.
In the Robinson—Ursescu theorem, it made another appearance for multimaps with
closed convex graphs. However, the notion of open multimap is not limited to the
convex case.

Definition 1.134. A multimap F' : X =2 Y between two topological spaces is said
to be open at (x,y) € F (identified with gph(F)) if for every neighborhood U of %,
F (U) is aneighborhood of y: U € A (X) = F(U) € A ().

Clearly, F : X =% Y is open at (X,y) € F if and only if F~!: ¥ = X is lower
semicontinuous at (¥,%). When X and ¥ are metric spaces, a quantitative notion can
be related to the preceding one. In order to get a versatile definition, we present it
with the use of a subset P of X x Y. The reader is advised to drop its occurrences in
a first reading, i.e., to take P = X x Y. Recall that if P is a subset of X x Y, given
x € X, P(x) stands for {y € Y : (x,y) € P} and P~' :={(y,x) €Y x X : (x,y) € P}.

Definition 1.135. A multimap F : X =2 Y between two metric spaces is said to be
open on a subset P of X x Y atrate a > 0 if

Vr>0, ¥(x,y) € F, B(y,ar)NP(x) C F (B(x,r)),
or in other words,
r>0, (x,y) €F, (x,y)) € P,d(y,y)) <ar== 3K € B(x,r): y e F(x/). (1.38)
Thus, when P =X x Y, the rate a measures the ratio between the radius of an open
ball with center in F(x) that can be guaranteed to be contained in the image of the

open ball B (x,r) and r itself. It is shown in a supplement that the case of multimaps
can be reduced to the case of maps. Introducing P allows some versatility: besides
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the case P:=X x Y, or P € .4 (%,y) (for which one says that F' is open at a linear
rate around (X,¥)), one can take P := {X} x Z with Z C Y (which corresponds to
linear openness at ¥ when Z € .#(¥)) and intermediate cases. The exact rate of
openness of F around (X,y) is the supremum of the constants a such that (1.38)
holds for some P € .4 (%,y).

The concept of metric regularity we introduce now is an extremely useful notion
for handling estimates about solutions of systems of equalities and inequalities.
As we have seen in the preceding section, it is also a key ingredient for using
penalization techniques. In fact, this concept enables us to treat general correspon-
dences. Its interest lies in the fact that dealing with the inverse image F~!(y) of
some point y € ¥ (or F~!(C) for some subset C C Y) by some map or multimap
F is often a delicate matter. In particular, one would like to replace the distance
function d(-,F~'(y)) to F~!(y) by a more tractable function such as d(y, F(-)).
When F(-) := g(-) + C, for some convex cone C of a normed space Y, one has
d(y,F(x)) =d(y—g(x),C). In particular, when Y = R" with the sum norm, C =R,
then d(y, F(x)) = (31, (8:(x) —y)*)-

Definition 1.136. Given a positive number ¢, a multimap F : X =2 Y between two
metric spaces is said to be metrically regular with rate c (or c-regular) on a subset P
of X x Y if

V(x,v)eP,  d(x,F '(v)) <cd(vF(x)). (1.39)

It is c-regular around (x,y) € F if it is c-regular on some P € A" (X, 7).
It is c-subregular at some (X,y) € F if it is c-regular on P := U x {¥} for some
UeN(%),ie.,ifdx, F~'(3)) < cd(7,F(x)) for x near X.

A multimap F : X =2 Y is said to be c-regular on P with respect to some subset S
of X if the multimap Fs whose graph is gph(F) N (S x Y) is c-regular on P.
It is useful to observe that F is c-regular on P C X x Y if and only if one has

(x,y) €F, (x,y) e P=d (x,F'(y)) <cd(y,)). (1.40)

The regularity rate regp(F) of F on P is the infimum of the set of positive
numbers ¢ such that F' is c-regular on P. Similarly, the regularity rate of F around
(x,¥) is the infimum reg(F, (x,y)) := inf{regp(F) : P € A (x,y)} of the regularity
rates of F over the family .4 (%,¥) of neighborhoods of (x,¥). Since F is metrically
regular with rate ¢ around (x,y) iff there exists some r > 0 such that (1.39) holds
with P = B(X,r) x B(¥,r), using the convention g =0, § =-cofors >0, the regularity
and subregularity rates of F around (X,y) are respectively

d(x.F'(v))

reg(F, (%,y)) = limsup A F(x)

(xv)=(xy)

and

x, F1(y
subreg(F, (7)) = limsup %
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Clearly, c-subregularity of F at (x,y) is a weaker property than c-regularity of
F around (X,¥). Moreover, c-subregularity of F at (X,¥) € F is equivalent to the
existence of some U € A/ (X), V € A (¥) such that d (x,F~1(y)) < cd(y,y) for all
x €U,y € F(x)NV. In fact, if this property holds and if g,r,s > 0 are such that
B(x,r) CU, B(¥,5s) CV,q < min(r,cs), one also has d (x,F ! (y)) < cd(y,y) forall
x€B(X,q),y € F(x)\V,since d (x, F1(y)) <d(x,%) < g <cs <cd(y,y).

It is often convenient to restrict the verification of (1.39) to pairs (x,v) such that
d(v,F(x)) is small enough. The following proposition allows this easing of the task.

Proposition 1.137. A multimap F : X =Y is c-regular around 7 := (X,y) € F if and
only if there exists some € > 0 such that F is metrically regular on the set

P:=P.:={(x,v) € B(xX,e) x B(y,€) : d(v,F(x)) < €},
if and only if there exists some € > 0 such that

(x,v) € B(F,€) x B(7,€), y € F(x)NB(v,€) = d (x, F ' (v)) <cd(v,y). (1.41)

Proof. Regularity on P; being obviously necessary, let us prove that it is sufficient.
Suppose F is metrically regular on the set P for some € > 0. Take & > 0 such that
(c+1)6 < ce and let (x,v) € B(X,8) x B(¥,0). By assumption, relation (1.39) holds
when d (v, F(x)) < €. When d(v,F(x)) > &, using the fact that d(v, F (%)) < d(»,y) <
6 < &, we see that relation (1.39) also holds, since we have

d(x,F'(v)) <d(x,%) +d (xF '(v))
<d(x,X)+cd (v,F(X)) <d(x,X)+cd(v,y) < ce < cd(v,F(x)).

In order to prove the last assertion, we note that when F is metrically regular on P,
implication (1.41) holds, since for all y € F(x) NB(v,€) we have d(v, F (x)) < d(v,y).
To prove the converse, we observe that for every (x,v) € B(X,€) x B(¥,€) such
that d(v,F(x)) < €, the set F(x) N B(v,e) is nonempty and one has d(v,F(x)) =
d(v,F(x) N B(v,€)), so that taking the infimum over y € F(x) N B(v,€), we get
relation (1.39). [l

It is useful to compare the notions of metric regularity and of openness at a linear
rate with a Lipschitzian property.

Definition 1.138 ([33]). A multimap M : Y = Z between two metric spaces is said
to be pseudo-Lipschitzian (or Lipschitz-like or satisfying the Aubin property) with
ratecon Q CY x Z if

vy €Y, en(M(y)nQO),M(Y)) <cd(y,y'). (1.42)

Instead of using the Pompeiu—Hausdorff excess ey, one can reformulate this
requirement (which can be restricted to y' € py(Q), since ey (2,S) = 0 for every
subset S) as follows:
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V(nz) €M, (V,2) €0, d(zM(Y)) <cd(y,Y). (1.43)
When Q =V x W, it takes the simpler form
VyeY,yev,zeWnM(yy), dzM(Qy'))<cd(y,y). (1.44)

One says that M : Y =2 Z is pseudo-Lipschitzian (or Lipschitz-like) with rate c
around (y,Z) € M if (1.44) holds for some V € A (y), W € A4 (2). If in (1.44),
W = Z, this last property implies Lipschitz behavior (with respect to the Pompeiu—
Hausdorff metric dg) with rate ¢ on V. However, this last property is seldom met in
applications, whereas pseudo-Lipschitz behavior frequently occurs.

When Q = {3} x W, where W € .#(z), i.e., when one has

VyeY, we WNM(y), dw,M(5)) < cd(y,y), (1.45)

one says that M is c-calm at (,Z). Let us note that this property is satisfied whenever
for some V € A (7), W € A(Z) one has d(w,M (7)) < cd(y,y) forally e V, w e
W NM(y), since for g, r,s > 0 such that B(¥,q) C V, B(z,r) C W, s < min(r,cq), for
y€Y\V,weB(Z,s)NM(y), one has d(w,M (7)) <d(w,2) <s <cq<cd(y,y).

Example: For f:Y — R, M(y) := [f(y),+o°), M is calm at (7, f(¥)) € X x R iff
f is calm at y € domf in the sense that there exist ¢, > 0 such that f(y) > f(7) —
cd(y,y) for all y € B(¥,r). The example of x ~— /|x| on R shows that calmness is
less demanding than the pseudo-Lipschitz property.

Similarly, the pseudo-Lipschitz property is a purely local property: one can
ensure that M is pseudo-Lipschitzian around (y,z) with rate ¢ provided there exist
some U € A (), W € .4 (Z) such that

vy, y eU, weWnM(y) dwM(')) <cd(y,y). (1.46)

In fact, assuming U = B(y, o), W = B(Z, 3) for some o, 3 > 0 as we may, taking
Y€ (0,0/2), 6§ >0, 6 < c(ax—2y),V :=B(,y), W :=B(z,8), foryec Y\U,
Yy eV,weW NM(y), wehaved(y,y') > a—yandd(w,M(y')) < §+d(Z,M(y')) <
0 +cy < c(a—7); thus (1.44) holds with W changed into W'.

The exact pseudo-Lipschitz (resp. calmness) rate of M around (X,y) is the
infimum of the constants ¢ such that (1.43) (resp. (1.45)) holds for some Q €
N (X,¥) (resp. W € A (2)).

The preceding notions are closely related, as the following theorem shows. Let
us note that it contains equalities for the rates we defined.

Theorem 1.139. For a multimap F : X =2 Y between two metric spaces, a subset P
of X x Y, and a positive number c, the following assertions are equivalent:

(a) F is open at the linear rate a := cLonp;
(b) F~':Y = X is pseudo-Lipschitzian on Q := P~" with rate c;
(c) F is metrically regular on P with rate c.
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Proof. The equivalence (b)<(c) consists in taking Z := X, M := F~!, z = x to pass
from (1.40) to (1.43) and vice versa.

(¢)=-(a) Suppose F is c-metrically regular on P. Given r > 0, (x,y) € F, (x,y') €
P with d(y,y’) < ¢~ 'r, relation (1.40) implies that d(x, F~'(y')) < r, so that there
exists X' € F~1(y') such that d(x,x') < rand y’ € F(x'): relation (1.38) holds.

(a)=(c) Suppose F is open at a linear rate a on P. Let ¢ := a~'. Given (x,y) € F,
y € P(x), s > d(y,y), setting r := cs, so that y € P(x) N B(y,ar), relation (1.38)
ensures that there exists ¥’ € B(x,r) such that y’ € F(x') or X' € F~'(y'), and hence
d(x,F~1(y')) < d(x,x') < r = cs. Since s is arbitrarily close to d(y,y), we get
d(x,F~1(y)) < cd(y,y), and (1.40) holds. O

Taking P =U x V for some U € A (X),V € A4 (3), we get a local version.

Corollary 1.140. A multimap F : X =3 Y between two metric spaces is open at a
linear rate a around (X,y) € F if and only if it is metrically regular around (X,y)
with rate ¢ = a~ " if and only if F~" is pseudo-Lipschitzian around (3,X) with rate c.

Taking P := U x {y} in Theorem 1.139, with U € .#'(X), we get a characterization
of calmness.

Corollary 1.141. A multimap F : X ==Y between two metric spaces is c-subregular
at (x,y) € F if and only if F~" is c-calm at (3,%).

1.6.7 Characterizations of the Pseudo-Lipschitz Property

One can give a characterization of pseudo-Lipschitz behavior of a multimap F in
terms of the function (x,y) — d(y, F(x)) or in terms of the distance function dr to
the graph of the multimap F given by

dp(u,v) :=inf{d((u,v), (x,y)) : (x,y) € F}.

In the sequel, we change the metric on X X Y in order to be reduced to the simpler
case of rates one: given ¢ > 0, we set

de((x,y), (x',y")) = max (cd(x,x/),d(y,y/)) . (1.47)

Theorem 1.142. Given ¢ > 0 and two metric spaces X ,Y whose product is endowed
with the metric d., the following assertions about a multimap F : X =Y and (X,y) €
F are equivalent:

(a) Forsome N € AN (%,¥) and all (u,v) € N one has d(v,F (u)) < d.((u,v),F);
(b) For some N € N (X,¥) the function (x,y) — d(y,F(x)) is 1-Lipschitzian on N
(c) F is pseudo-Lipschitzian with rate ¢ around (X,y).

Proof. We use the fact that for a subset F' of a metric space Z and for a given
neighborhood N of a point 7 € F there exists a neighborhood P of 7 such that for all
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w e Ponehasd(w,F)=d(w,FNN). In fact, taking P := B(Z,r), where r > 0 is such
that B(z,2r) C N, forallw € P,z € F\N one has d(w,z) > d(z,Z) —d(w,z) > 2r—r,
while d(w,F) <d(w,z) <r.

(a)=-(b) When (a) holds, forall (x,y), (x,y") €N one has d(y, F (x)) < d.((x,y),F),

d(y,F(x)) —d(y',F(x')) < inf{max(cd(x,x),d(v,2)) : 2 € F(x')} —d(y/,F(x'))
< max (cd(x,x'),d(y,F(x))) —d(y/,F(x'))
<max(cd(x,x'),d(y,y)).

(b)=-(c) Assume (b) holds and take a neighborhood P := U x V of 7 := (X,y)
associated to N as in the preliminary part of the proof, so that for every w := (u,v) €
P one has d(w,F) = d(w,FNN). Then for all u,x € U, v € F(x) NV one has

d(v,F(u)) <d(v,F(x)) +d:((u,v), (x,v)) = cd(u,x).

Thus, by (1.46), F is pseudo-Lipschitzian with rate ¢ around (X,y).

(c)=(a)LetU € A (X), V € A (¥) be such that for every u,x € U,v € F(x)NV,
onehasd(v,F(u)) <cd(u,x).LetU’ € A (X),V' € A4 () be such that forall (u,v) €
U’ x V' one has d.((u,v),F) = d.((u,v),F N (U x V)). Since for all y € F(x) we
have cd(x,u) < d.((u,v),(x,y)), taking the infimum over (x,y) € FN(U x V), we
getd(v,F(u)) <d.((u,v),F). O

1.6.8 Supplement: Convex-Valued Pseudo-Lipschitzian
Multimaps

Pseudo-Lipschitzian multimaps with convex values in a normed space can be
characterized in a simple way (the statement below is a characterization because
any Lipschitzian multimap is obviously pseudo-Lipschitzian).

Proposition 1.143. Let X be a metric space, let Y be a normed space, let F : X =3Y
be a multimap with convex values, and let X € X, y € F(X). If F is pseudo-Lip-
schitzian around (X,y), then for some ball B with centery the multimap G given by
G(x) := F(x)NB is Lipschitzian. More precisely, if for some q,r,{ € P := (0,+e0),
one has

en(F() "B, 7, F(Y)) < td(x,X) VX € Bfr,g),
then for B := B[y, r], G(-) := F(-)NB and p < min(¢~'r,q), one has

dy(G(x),G(x)) < 2r(r—tp) Yd(x,x') ¥x,x' € B[z, p].

Proof. Without loss of generality we may assume that y = 0. Taking x := X, and
observing that y € F(xX) N B[y, r], we get that for all X’ € B[X,q|, F(x’) is nonempty.
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Let k € (¢,p~'r). Given x,x’ € B[X, p], let us prove that for all y/ € G(x') we have
d(y,G(x)) < 2r(r—kp)~'kd(x,x"), which will ensure that

en(G(Y),G(x)) < 2r(r—kp) 'kd(x,x'). (1.48)

The result will follow from the symmetry of the roles of x and x’ and by taking
the infimum over k € (¢,p~'r). Giveny’ € G(¥'), we can pick w,z € F(x) such that
lw| < kd(x,X) <kpand ||z—y'|| < k& for § := d(x,x’). If z € B[0, r], the expected
inequality is satisfied, since d(y',G(x)) < ||z— /|| < kd(x,x') and 2r(r —kp)~' > 1.
Suppose s := ||z|| > r. Let y := tw+ (1 —t)z, with 7 := (s — r)(s —kp)~'. Then
1€[0,1],y € F(x),andsince s—r:= ||z|| —r < |lz= Y| + ||| = r < kO, ||w]| < kp,
llz|l = s, we have

Iy < (s=r)(s—kp) 'kp+ (r—kp)(s—kp) s <r
and
lz=yll =tllz=wll < (s—r)(s—kp) (s +kp) < (s —kp) ™" (s + kp)k8;

hence since ||z —y'|| < k8, (s —kp) ' (s +kp)k& + k& = 2s(s — kp)~'kS and since
u s u(u—kp)~! is nonincreasing,

ly =y < lly=zll+ ||z < 2s(s —kp)~'k8 < 2r(r—kp)~'k8.

1.6.9 Calmness and Metric Regularity Criteria

Now we devise criteria for calmness and metric regularity. Since these concepts do
not require any linear structure, it is appropriate first to present criteria in terms
of metric structures. Later on, we will devise criteria in terms of concepts from
nonsmooth analysis. The following obvious statement explains why the decrease
principle may be useful for subregularity and calmness.

Proposition 1.144. Let F : X =Y be a multimap with closed values between two
metric spaces and let X € X, 5 € F(X). Then F is subregular at (X,5) (and F~" is
calm at (y,X)) if and only if the function f : X — R given by f(x) := d(y,F (x)) is
linearly conditioned at X in the sense that there exist ¢ > 0 and U € A (X) such that

d(x,f~1({0})) < cf(x) forall x € U.

Note that since f~'({0}) = F~!(¥), the assumption made in Theorem 1.114 that
f~!is closed at 0 means that F~! is closed at ¥, i.e., that cl(gphF~!) N ({7} x
X) = gphF~' N ({7} x X) or that for every sequence ((xn,y,)) —F (x,¥) one has
x€F1(y).
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Corollary 1.145. Let F : X = Y be a multimap with closed values between two
metric spaces and let X € X, y € F(%). Suppose F~" is closed at y and there exist
b > 0, a neighborhood U of X, and a decrease index Oy of the function f : X — R,
given by f(-) :=d(y,F(-)) such that 8¢(x) > b for x € U\ F~(9).

Then F is subregular at (%,5) (and F~' is calm at (,%)) and

VxeU dx,F'(3)) < —-dF,F(x)).

S| =

For metric regularity, we may use the parameterized decrease principle. We
endow X x Y with the metric d. given by d. ((x,y),(x',y)) = cd (x,x') vV d (y,y)
and we recall that 17 denotes the indicator function of a subset F of X x Y.

Theorem 1.146. Let F : X == Y be a multimap with closed graph between two
complete metric spaces and let b be a positive number. Endow X XY with the
metric do with ¢ := 1/b. Let f : Y x X — R.. be given by f(w,x) := d(w,F(x)).
Let (X,¥) € F := gph(F) and let W x U be a neighborhood of (y,X). Suppose that
for some decrease index d,, of f,, := f(w,-) one has

8u(x)>b  Y(wx) eW XU, wé F(x). (1.49)

Then F is metrically regular around (X,y) with rate ¢ :==1/b.

Proof. Let S:= f~1({0}) and for w € W, S(w) := {x € X : (w,x) € S}. Since for
x € X, F(x) is closed, we have x € S(w) if and only if w € F(x), so that S(w) =
F~!(w) for all w € W. Since F has a closed (or locally closed) graph, £~ is closed
at 0. Moreover, the multimap w = epif is inward continuous at (¥, (%,0)), since
(x,f(w,X)) = (x,0) as w — y. Then the parameterized decrease principle ensures
that there exists some € > 0 such that

V(w,x) € B((3,%),€), d(x,F~1(w)) <cf(w,x). O

Exercises

1. Let f be a bounded map between two metric spaces X,Y. Suppose there exist
X € X and U € ¥ (X) such that f is Lipschitzian with rate k on U. Prove that there
existk’ > 0and U’ € A4 (X) such that d(f(x), f(u)) <Kd(x,u)forallu e U',x € X.

2. Let F be a multimap between two metric spaces X,Y. Prove that the following
two assertions about a point (xg,yo) of the graph of F' and k > 0 are equivalent:

(a) There exist neighborhoods U, V of xy, yg respectively such that

en(F(u)NV,F(u)) < kd(u,u’) Yu,u' € U.
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(b) There exist neighborhoods U, V of xy, yg respectively such that
ea(F(u)NV,F(x)) <kd(u,x) Vue UVx e X.

(This characterization of the pseudo-Lipschitz property is due to Henrion.)

3. (a) Let C be a nonempty convex subset of a normed space X and let h: X —
R be a convex function null on C. Let g := d(-,C). Suppose that for some
0 > 0 one has g(x) < h(x) whenever g(x) < 8. Show that d(x,C) < h(x) for
allxe X.
(b) Let F: X = Y be a multimap with convex graph between two normed
spaces. Let ¢, 6 > 0,y € Y be such that for all x € X satisfying d(x, F ~!(y)) <
r one has
d(x,F~'(y) < cd(y,F (x)).
Prove that the preceding inequality holds for every x € X. (See [656].)

4. Let F: R = R? be the multimap with domain R, given by
F(x):={(nz) eRx Ry iy < 2xz}.

(a) Show that F has a closed convex graph that can be interpreted as the set of
vectors in R? that make an angle no more than 7 /4 with the vector (1,0, 1).

(b) Show that (0,0) € F(0) but that (0,0) is not an internal point of F(X) and that
for every neighborhood V of (0,0), the point (g,€*) is in V for € > 0 small
enough but x € F~'(g,&3) iff x > (2¢) 7.

5. (a) Prove that a multimap F : X =2 Y between two metric spaces that is open at
a linear rate a on some subset P of X x Y is metrically regular with rate ¢ = g~
on every subset Z of X x Y such that for some ¢ > 0 one has {x} x (B(v,0)N
F(x)) C P whenever (x,v) € Z.

(b) Deduce from this result that if F is open with a linear rate a on some
neighborhood U x V of (%,¥) € F then it is metrically regular around (X,)

with rate c = a~ 1.

6. A multimap F : X =2 Y between two metric spaces is said to be globally open at
a linear rate a around X € X if there exist some p > 0 and some U € .4 (X) such that

B(F(x),ar) C F(B(x,r)) whenever r € (0,p) and x € U,
where, for a subset S of Y, we set B(S,r) :={y €Y :d(y,5) <r}.
A multimap F : X = Y between two metric spaces is globally regular around

X € X with rate c if there exist § > 0 and a neighborhood U of X such that

d(u, F~'(y)) < cd(y,F(u)) wheneveru € U, y € Y and d(y,F (u)) < §.
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Prove that F : X =2 Y is globally open at a linear rate @ around X € X iff F is globally
regular with rate ¢ := a~! around ¥ € X. (See [721].)

7. Reduction to mappings.

(a) Show that a multimap F : X = Y is open on P C X x Y with rate a iff the
restriction p := py | F of the canonical projection py : X x Y — Y to F is open
on P :={(x,y,y) €X XY xY: (x,y) € P} withrate a, X X Y being endowed
with the distance d, with ¢ :=a~".

(b) Show that a multimap F : X =2 Y is c-regular on W C X X Y iff the restriction
p = py | F of the canonical projection py : X x Y — Y to (the graph of) F is
c-regularon W' := {(u,y,v) € X XY x Y : (u,v) € W}.

1.7 Well-Posedness and Variational Principles

In this section we show that three important topics in nonlinear analysis and
optimization are intimately related: variational principles, the theory of perturba-
tions, and the notion of well-posedness. The concept of genericity plays a key role in
these connections. Our route takes a simple and versatile approach to these “smooth”
variational principles, which will play an important role in the sequel.

We recall that a subset G of some topological space T is generic if it contains the
intersection of a countable family (G,) of open subsets of T (a so-called ¥ set) that
are dense in T (i.e., clG, = T). We also recall that Baire’s theorem ensures that in a
complete metric space every generic subset is dense.

We will use the classical concept of well-posed minimization problem. Given a
function f : X — Re, := RU{+eo} on a complete metric space X, the minimization
problem of f is said to be well-posed (in the sense of Tykhonov) if every minimizing
sequence (x,) of f converges; here () is said to be minimizing if (f (x,)) — infy f.
We will say in brief that f is well-posed. This property entails uniqueness of
minimizers. Its main interest concerns the case in which f belongs to the set
BLS (X) of lower semicontinuous (lower semicontinuous) functions from X into
R.. that are bounded below. Then the well-posedness of f entails existence (and
uniqueness) of a minimizer.

While common experience shows that one cannot expect that any minimization
problem is well-posed, it can be proved under appropriate assumptions that most
problems are, i.e., that well-posedness is a generic property. In order to give a precise
meaning to the preceding assertion, we will use the formalism of parameterized
minimization problems. It is a framework that has proved to be efficient and versatile
for optimization problems and duality theory.

In this section, unless otherwise stated, the parameter space W is a topological
space and the decision space X is a complete metric space with metric d. In several
instances W will be a space of functions on X. If F : W x X — R., is a function, the
partial functions F,, : X — Re. and F; : W — R, are defined by F, (-) = F (w,-) and
F.(-) = F (-,x). We say that F is a perturbation of a given function f : X — R.. if
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for some given base point 0 of W we have Fy = f. In such a case, the study of the
performance function p given by

w) = inf F(w,x
plw) i= inf F(w.x)
gives precious information about the minimization of f.

The following easy characterization of well-posedness justifies the use of the
set of approximate solutions to the problem of minimizing the given function
f:X — Re. We assume that f is bounded below and, for € > 0, C C X, we set

S(f,C,e):={xeC: f(x) < irclff+£}, Sp(e) :=S(f,€)=S8(f,X,e). (1.50)

As above, .4/ (w) denotes the family of neighborhoods of w in W and the diameter
of a subset ¥ of X is denoted by diamY: diamY :=sup{d (y,2) : y,z € Y}

Lemma 1.147. A function f : X — R that is bounded below is well-posed if and
only if diam (Sy (¢)) — O as € — 0.

Proof. The condition is sufficient, as it implies that any minimizing sequence is a
Cauchy sequence. It is also necessary: if there were & > 0 and a sequence (g,) — 04
such that diam (S (€,)) > & forall n € N, we could find two sequences (x,), (x];) in
X such that x),,x), € Sy(&,) and d(x},,x),) > & for all n € N. Then the sequence (x;)
given by x, = x), if n = 2p, x, = x}, if n = 2p + 1 would be minimizing but it could
not converge. O

Given a perturbation F : W x X — R.., our genericity criterion involves the sets
W(r)y={weW:3e>0,3acX, S(F,,e) CBla,r)} r>0.

Theorem 1.148. Let W be a topological space, let X be a complete metric space
andlet F : W x X — Re, be such that for allw € W the function F,, is bounded below
on X and has a nonempty domain. If the following two conditions are satisfied, then
there exists a generic subset G of W such that for all w € G the minimization of F,,
on X is a well-posed problem:

(a) Foreveryr> 0 the set W(r) is open in W;
(b) Forevery r> 0 the set W(r) is dense in W.

In particular, if W is a metrizable Baire space and if F' is a perturbation of f,
there exists a sequence (wy,) — 0 such that F (wy, -) is well-posed for all n € N.

Proof. Given a sequence (r,) in P := (0, 4c0) with limit 0, we set

G= ﬂW(rn),

neN
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so that by our assumptions, G is a generic subset of W. Let us show that for every
w € G, any minimizing sequence (x,) of F, is convergent. It suffices to show that
(x,) is a Cauchy sequence. Given o > 0, let k € N be such that r; < /2. Since
w € W (ry), we can find a € X and € > 0 such that S (F,,, &) C B(a,ry). Since (x,) is
a minimizing sequence of F,, we can find m € N such that x,, € S (F,,,€) forn > m.
Thus diam{x, : n > m} < 2r; < . O

Let us give criteria ensuring conditions (a) and (b). We start with condition (a).
The assumption that for all w € W the function F,, is bounded below is still in
force. Let us recall that the topology of uniform convergence on the space (Rw)x of
functions from X to R., is the topology induced by the metric d.. given by

W f) gl
d(f,8) TR T T @]

This topology is generated by the sets

U(f, o) :={g: f(x) — a < g(x) < f(x) + a} a€(0,1), f € (R)",

where, by convention, +oo 4 0t = 40, 400 — @ =1/, 400/ 400 = 1.

Lemma 1.149. Let W be a topological space, let X be a metric space and let F :
W x X — R, be such that for allw € W the function F,, is bounded below on X and
has a nonempty domain. If the mapping w — F,, is continuous for the topology of
uniform convergence on (R..)X, then for all r > 0 the set W (r) is open.

Proof. Letr > 0and letw € W(r). There exist € > 0 and a € X such that S (F,, &) C
B(a,r) and there exists a neighborhood V of w such that F, € U(F,,&/3) for all
v € V. Then for all x € S(F,,&/3), one has x € S(F,,€) C B(a,r), since F,(x) <
F,(x)+€/3 <infF,(X) +2¢e/3 < infF,,(X) + €. Thus V is contained in W(r). O

Now our task consists in giving verifiable conditions ensuring condition (b)
of Theorem 1.148. The next criterion uses the possibility of deforming F,, in a
sufficiently steep manner around an approximate solution x as if its graph were
given a blow. We will obtain this possibility by introducing “bumps,” i.e., nonnull
functions that are zero outside of a bounded subset.

Lemma 1.150. The density assumption (b) of Theorem 1.148 is satisfied whenever
the following condition holds: for allw € W,V € A (w), r > 0 there exist € > 1 >
0, a € S(Fy,n), v €V such that

F,(a) < F,(a) —¢, (1.51)

F,>F, onX\B(a,r). (1.52)
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Proof. In order to prove that for every r > 0 the set W (r) is dense in W, let us show
that for all w € W, V € .4 (w), the set W(r) NV is nonempty. Taking € > 1 > 0,
vEeV,a€ S(F,,n) as in the assumption, by (1.51), for all x € S(F,,€ — 1) we have

E(x) <p(v)+e—n<Fk(a)+e-n <k (a)—n <pw) <Fy(x),

so that x € B(a,r) by (1.52). Thus S(F,,€ — 1) C B(a,r) andv e W(r)NV. O

The criterion of Lemma 1.150 is satisfied whenever the perturbation is rich
enough, as the following examples show.

Example. Let X be an arbitrary metric space and let W be the space BLS (X) of
bounded-below lower semicontinuous functions on X endowed with the topology
of uniform convergence. Let us show that the evaluation F : W x X — R., given by
F(w,x) = w(x) satisfies the criterion of Lemma 1.150. Given w € W, V € 4 (w),
r > 0, we pick 1 > 0 such that v € V whenever v satisfies w — & <v < w—+ € with
€:= 21, and taking a € S(F,,,n), we define v by v(a) = w(a) — €, v(x) = w(x) for
x € X\ {a} and we see that v € BLS (X) satisfies conditions (1.51) and (1.52). O

Example. Let X be an arbitrary metric space and let W be the space BC (X)
of bounded continuous functions on X endowed with the topology of uniform
convergence. Let us show that the evaluation F : W x X — R., also satisfies the
criterion of Lemma 1.150. Givenw € W, V € .4 (w), r > 0, we pick 1 > 0 such that
v € V whenever v satisfies w — 31 <v < w+ 37, and taking € :=2n, a € S(F,,,n)
and 0 € (0,r) such that w(B[a, 6]) C [w(a) — n,w(a) + 1], using Urysohn’s theorem
on the closed ball Bla,d], we can find v € BC(X) such that v(a) = w(a) — &,
v(x) =w(x) forx € X\ B(a,0),

v(x) € [w(a) —2n,w(a)+2n] C [w(x) —3n,w(x)+3n] forx € B(a,d),

sothatveV. O

These examples suggest that we consider the case that W is a set of functions
from X to R.., f is a given function on X, and F is the perturbation (w,x) — f(x) +
w(x). In particular, we say that a normed space (W, ||-||) of bounded functions from
X to R is bumpable if there exists a subset B of W satisfying the following condition:
for every a,r > 0 one can find € > 0 such that for all @ € X there exists b € B
such that

1|l < e, b(a) >e€, b(x)<0 forxeX\B(a,r). (1.53)

Corollary 1.151 (Metric variational principle). Let (W,||-||) be a bumpable space
of bounded functions on X. Then given a bounded-below, proper, lower semicontin-
uous function f : X — R, the set of g € W such that f + g is well-posed is generic
inW.

Proof. Again, let F: W x X — R., be given by F (w,x) = f(x) +w(x). It suffices to
check that assumption (1.53) implies the conditions of Lemma 1.150. Letw € W,
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Ve A (w), r> 0 be given. We pick o > 0 such that B(w, or) C V and we associate
to o, r some € > 0 as in the definition of a bumpable space. Then for 1) := €/2 we
pick a € S(F,,n) and b € B satisfying (1.53). Then for v:=w—b € V, conditions
(1.51) and (1.52) are satisfied. ]

When X is a normed space, it is natural to take for B a family of bumps deduced
by translations and dilations from a single bump located near 0. Recall that the
support of a function f on X is the closure of the set of points at which f is non null.

Theorem 1.152 (Deville-Godefroy—Zizler variational principle). Let X be a
normed space and let W be a linear subspace of BC(X) endowed with a norm
I|| stronger than the norm ||-||.. of uniform convergence, for which it is complete.
Suppose

(a) There exists some b € W with bounded support such that b(0) > 0
(b) ForallweW, a € X, the functionw, : x — w(x+a) is in W and |wq|| = ||w]|
(c) Forallw e W and allt > 0 the function w(t-) : x — w(tx) belongs to W

Then given a bounded-below, lower semicontinuous function f : X — R, the set G
of g € W such that f + g is well-posed is generic in W.

Moreover, there exists some function . : P — P depending only on (W, ||-||) such
that for every € >0 and y € X satisfying f(y) < inf f(X) + o.(€) one can find some
g € G with ||g|| < € such that the minimizer z of f + g belongs to B(y,€). If for
all w € W, one has sup,~; ||w(t-)|| < 4o (resp. sup; 1~ |w(t-)|| < -+oo), then for
some ¢ > 0, one can take o.(€) = c€ (resp. o(€) = ce?) for € € (0,1).

Proof. Tt suffices to check that the family of functions
B={sb(a+t):s€R, 1>0,a€X}

makes (W, ||-||) bumpable. Let 6 > 0 be such that the support of b is contained in
B(0,0). Given ot,r >0anda € X, we take 7 := r~' ¢, s > O such that s ||b(t-) || < @,
€ € (0,5h(0)) and we set b := sb (¢ - —ta). Then ||b|| < &, b(a) > €, and b = 0 on
X\ B(a,r).

In order to prove the final assertions, we pick b € B such that b;(0) = 1 and the
support of b; is contained in B(0, 1). For € > 0 we define b, € W and o(€) by

be(x):=bi(x/e),  a(e):=¢g/(4]bel]).
Given y € X satisfying f(y) < inf f(X)+ o(€), let us set
h(x) :==30(e)bg(x—y).
The first part of the theorem yields some k € W and some z € X such that ||k|| < ct(¢€)

and (f + h) + k attains its minimum at z € X. Since ||bg|| > ||b¢l|., > 1, one has
lkll.. < k|| < oc(€) < €/4. Then g := h+ k satisfies ||g|| < ||h|| + ||k]| < € and
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(f+8)(2) < f(y)+gy) < f(y) —3ale) +k(y) <inff(X) —a(e),  (1.54)
Vxe X\B(y,e) (f+g)(x)=f(x)+k(x)>inff(X)—a(e),  (1.55)

so that z € B(y, €). Finally, when for some ¢ > 0 and all € € (0,1) one has ||b¢|| <
1 /4c (resp. € ||be|| < 1/4c), one can take o(g) = ce (resp. a(e) = ce?). O

In turn, the Deville-Godefroy—Zizler variational principle encompasses a smooth
variational principle, the Borwein—Preiss variational principle, which will be dis-
played in the next chapter, since it requires some differentiability notions. It will
play an important role in the sequel.

Exercises

1. Use Lemma 1.147 and the proof of Theorem 1.148 to show that for every

sequence (r,) — 04, the set Wp of w € W such that F,, is well-posed is exactly

G =N W(r) =N, W(ra).

2. (a) Show that W(r) is open whenever the performance function p is outward
continuous and the perturbation F' is upper epi-hemicontinuous in the sense
that for all u € W such that dom (F,) # &, one has ey (epi (F,) ,epi (F,)) — 0
as v — u, where ey is the Hausdorff—-Pompeiu excess.

(b) Show that when w — F,, is continuous for the topology of uniform con-
vergence on (Rw)x , then the performance function p is outward continuous
and the perturbation F is upper epi-hemicontinuous.

(c) Observe that the assumptions of (a) are strictly more general than the
assumption of Lemma 1.149. [Hint: Consider the example W =R, X =R,
F given by F (w,x) = max(1 —w~!|x|,0) for w # 0, F(0,x) = 0.]

3. Let us say that the perturbation F is boundedly epi-hemicontinuous if for every
bounded subset B of X x R and for all u € W one has ey (epi (F,) N B,epi (F,)) —
0 and ey (epi(F,)NB,epi(F,)) — 0 as v — u. Show that if F is boundedly epi-
hemicontinuous and if for each w € W the function F,, has connected sublevel sets,
then for all » > 0 the set W(r) is open.

4. LetX be a metric space, let W be a linear subspace of the space BC (X) endowed
with a norm ||-|| stronger than the norm of uniform convergence. Show that (W, ||-||)
is bumpable when the following two conditions involving some point X € X, some
subset By of W, and some family H of isometries of X are satisfied:

(a) Forall r > 0 there exists b € Bg such thatb (x) >0,b | (X \ B(x,r)) <0, ||b|| <r;
(b) Forall x € X, b € B there exists 4 € H such that h (x) =X, boh e W, ||boh| <
151]-

Assuming that X is a normed space, taking x = 0 and for H the family of translations
of X, deduce Theorem 1.152. (See [814].)
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5. Let E be a normed space and let X be the projective space associated with E: X
is the quotient of E \ {0} for the equivalence relation e ~ ¢’ iff there exists A € R
such that ¢’ = Ae. Let p be the canonical projection p : E\ {0} — X. Let W be the
space of functions f on X such that f o p is of class C! on E \ {0}. Suppose there
exists on £ a bump function (i.e., a function b with bounded nonempty support)
that is of class C' and Lipschitzian. Show that W is bumpable for the topology of
uniform convergence.

6. Let X be a complete metric space and let k : X x X — R, := [0, o] be a forcing
bifunction, or, more generally, a function k: X x X — E+ such that k(x,x) = 0 for
all x € X and d < p ok for some modulus 4 : R — R Prove the Borwein—Preiss
variational principle [128] in the version of [655] and [137, Theorem 2.5.2]: Given
a bounded-below lower semicontinuous function f : X — R.., a sequence (c,) of
positive numbers, and for € > 0 some e-minimizer X of f, there exist u € X and a
sequence (u,) of X such that for g := Y ¢,,k(-,u,), one has
n

(a) k(x,u) <e/co, k(xn,u) <27"€/co;
(b) f(u)+g(u) < f(x);
(©) Fu) +2u) < f(x) + () for all x € X\ {u}.

Observe that when X is a Banach space with a smooth norm ||-|| and for some p > 1
one has k(x,x’) = ||x — x'||”, then g is smooth.

7. Show that the Ekeland variational principle follows from Corollary 1.151 or
Theorem 1.152 and one can even get a reinforced assertion as follows.

Given a bounded-below proper lower semicontinuous function f: X — R., on the
complete metric space X and given € > 0, there exists x, € X such that f + &d (xg,.)
is well-posed. [Hint: Take for W the space of Lipschitz functions on X with an
appropriate norm involving the Lipschitz rate; see [430].]

1.7.1 Supplement: Stegall’s Principle

A subset Y of a Banach space X is said to have the Radon—Nikodym property (RNP)
if every nonempty bounded subset Z of Y is dentable in the following sense: for
every 8 > 0 there exist € > 0 and x* € X*\ {0} such that diam S (x*,Z, ) < 6, where
S(x*,Z,€) :={z€ Z:x*(z) <infx*(Z)+ €} is the slice defined in (1.50). When X
is a dual space, Z is said to be weak™ dentable when it has weak* slices (i.e., slices
defined by elements of the predual of X) of arbitrarily small diameter.

Theorem 1.153 (Stegall). Let Y be a nonempty closed and bounded subset of a
Banach space X with the RNP and let f be a bounded-below lower semicontinuous
SfunctiononY. Then the set of x* € X* such that f +x* is well-posed on Y is a generic
subset of X*.
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Proof. Let W =X* and let F : W x Y — R.. be given by F (w,y) = f(y) + (W, y).
Let us endow W with the dual norm. Then F is lower semicontinuous and w +— F,,
is continuous for the topology of uniform convergence, so that assumption (a) of
Theorem 1.148 is satisfied by Lemma 1.149. For the proof that assumption (b) is
satisfied, we refer to [832, pp. 85-87] or [137, pp. 267-271]. (]

In the following variant, the boundedness assumption on Y is replaced with a
coercivity assumption: f is said to be super-coercive if liminf|| .. f(x)/[|x]| > 0.

Corollary 1.154 (Fabian). Let X be a Banach space with the RNP and let f be a
lower semicontinuous, bounded-below, super-coercive function on X. Then the set
of x* € X* such that f + x* is well-posed on X is a generic subset of X*.

Proof. Let a > 0 with liminf) .. f(x)/ [|x]| > a, so that there exists r > 0 such
that f(x) > a||x|| for x € X \ rBx. Since f is bounded below, adding a constant to
f if necessary, we may suppose f(x) > a||x|| for all x € X. Given s € (0,a), for all
x* € (a—s)Bx+, x € X we have

)+ x) > allx]| = (a —s) [lx]| = slx]] - (1.56)

Let t > f(0)/s, o := st — f(0). Applying Stegall’s principle to the ball By and
taking € := a — s, we can find some x* € X* with |[x*|| < a — s such that f+x* is
well-posed on ¢Bx. To get the conclusion, it suffices to show that f(x) 4 (x*,x) >
inf(f +x*)(tBx) + o for all x € X \ tBx. If, on the contrary, there exists some x €
X \ tBx such that f(x) + (x*,x) < inf(f +x*)(tBx) + a, then by (1.56), we have
s|lx]| < (f +x*)(0) + o = st, hence ||x|| < ¢, a contradiction. O

Stegall’s principle can be used to get a representation of Radon—Nikodym sets
in terms of exposed points. Given a bounded, closed, convex subset C of a Banach
space X, a point X € C is said to be firmly (or strongly) exposed by some x* € X*
if —x* is well-posed on C and X is a minimizer of —x*, or equivalently, if every
sequence (x,) of C such that ((x*,x,)) — oc(x*) := supx™(C) converges to X.

Theorem 1.155. Let X be a Banach space and let C be a bounded, closed, convex
subset of X with the RNP. Then the set G of continuous linear forms on X that firmly
expose C is a dense Gy subset of X*. Moreover, C is the closed convex hull of the set
E of firmly exposed points of C.

Proof. LetW :=X* let F : W x X — R be the evaluation, and for r > 0, let
W(r):={x"€X":3e>0,3aeC, S(x*,C,e) C B(a,r)}.

Then given a sequence (r,) — 0, as in the proof of Theorem 1.148, G is seen to be
the intersection of the family (W (r,)),. Since C has the RNP, all W(r,) are dense
in X*. Now, for all » > 0, W(r) is open, since for x* € W(r), if € > 0, a € C are
such that S (x*,C,€) C B(a,r) and if b > 0 is such that C C bBx, then for n € (0,¢),
B >0 with n +2Bb < € and for y* € B(x*, 8) one has S (y*,C,n) C S (x*,C.,¢), as



112 1 Metric and Topological Tools

is easily seen, so that y* € W (r). For the proof of the last assertion, we refer to [376]
or [832]. A nice joint approach to Stegall’s principle, the Asplund—Namioka—Phelps
theorem, and Collier’s theorem is given in [616]. O

1.8 Notes and Remarks

The notions of metric space and topology that seem so natural today were once
undecipherable. Many other notions in mathematics became obvious, even if they
were once mysterious. It is likely that nets remain obscure objects for many
readers. Thus, we give elements to master this notion of generalized sequences.
Another example is prevalence, a vague idea. It can be made precise in different
ways. The one we consider, genericity, has a great importance in mathematics for
various purposes: analysis [37, 219, 289, 341, 902, 942], convergence [260, 859],
differentiability [20, 114, 259, 437, 623], geometry and differential topology [1],
mathematical programming [544, 545, 552], optimal control theory, optimization
[71,72,261,323,352, 860-863], partial differential equations [887, 888], to name
a few.

The weak™ topology on a dual space plays an important role in the sequel. We
present some important results without proofs just to set the stage. They also serve
to show the differences between the properties of the weak topology and those of
the weak® topology, in particular for what concerns sequential compactness. We
give a complete proof of Theorem 1.13 inspired by [507, lemma p. 151] because
we feel that the use in nonsmooth analysis of the bounded weak™ topology should
be promoted.

Convergences and topologies can be introduced on the power set & (X) of a
topological space X, i.e., the set of subsets of X. Although this point of view
may be illuminating, we have refrained from adopting it; we refer the reader to
[86, 209, 591, 607, 900]. In spite of its deficiencies, we have kept most of the
traditional terminology for limits of sets and continuity of multimaps. However,
we have introduced some notions that may be useful but are not classical. More
drastic changes of terminology are to be found in the monograph [883]. Variational
convergences are studied there in more detail. See also [24, 29, 39, 86]. Note
that the definitions of epi-limits would be more natural if one were to consider
hypoconvergence (i.e., convergence of hypographs) instead of convergence of
epigraphs, but the great importance of convexity incites us to keep epigraphs.

The preliminary study of convexity we introduce in this first chapter is justified
by the use of separation properties. More will be presented in Chap. 3. The notion of
ideally convex set is due to Lifshits; see [507, pp. 138, 201] and [7,694] for variants.
The approach to the minimax theorem presented here is taken from [893].

The Ekeland variational principle is a tool of utmost importance for many
questions in nonlinear analysis and nonsmooth analysis. See [37,262,341-348,350—
353] and for equivalent forms [756,792,906]. In particular, a geometric equivalent
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form is given in [253, 792] and a reinforced version appears in [430]. Related
geometric statements of Brgnsted [174] and Bishop—Phelps [104] paved the way
to the use of order methods in nonlinear analysis. The relatives of the drop theorem
given in [792] were attempts to obtain a smooth version of the variational principle.
This aim has been reached by Borwein and Preiss [128] and generalized by Deville—
Godefroy—Zizler [289]. The presentation of the latter here follows [814].

We have offered the reader some detours and complements to variational
principles in order to stress their usefulness. Several circular tours exist [253,
262, 465,792, 906]. The fact that the Ekeland variational principle characterizes
completeness of a metric space [961] is a testimony of the generality of that result.
Thus, it has attracted much attention. Some geometrical forms have been given to
it [792] and some extensions to vector-valued functions, more general spaces [386]
or other perturbations [128], [137, Sect.2.5], [655, 674] have been given; they are
outside the scope of this book. The quantitative form of the Banach open mapping
theorem is adapted from [529].

The Palais—Smale theory is an important tool in nonlinear functional analysis;
see for instance [37,338,765,767,988].

Section 1.6 benefited from the paper [216], from the book [218], and from a
mutual influence from the works of Azé-Corvellec [55], Azé [53, 54], and loffe
[531]. The decrease principle of Theorem 1.114 appeared in [825].

Given a function f : X — R, := [0,e0] on a metric space X, the following
question arises: if the value of f at x is small, is x close to the zero set S :=
£71(0) of X? Such a question is of importance for algorithms, but its bearing
is much larger. Numerous authors have tackled it, among whom are Hoffman,
Burke—Ferris, Cominetti, Lemaire, Zhang—Treiman, Cornejo—Jourani—Zalinescu,
Pang, Penot, loffe, Ng—Zheng, Ngai—Théra, Azé—Corvellec, Az¢, Henrion—Jourani—
Outrata, Dontchev—Rockafellar, Henrion—Outrata, Kummer, L.ojasiewicz, Bolte—
Daniilidis—Lewis, Wu—Ye, and many more. The convex case is specially rich. It has
been treated by Auslender, Cominetti, Crouzeix, Klatte, Lewis, Li, Mangasarian,
Pang, Robinson, Song, Zalinescu among others.

The first study of error bounds was the one by Hoffmann [505] in the framework
of polyhedral functions. The use of subdifferentials for the study of error bounds
began in [990] and has been followed by [229, 808]. The language in these papers
was related to nonlinear conditioning, with the same objective of evaluating the
distance to a set of solutions by the value of the objective. The route we take for
reaching such an aim avoids the lower semicontinuity assumption of the Ekeland
principle by using a variant of a result of Cominetti [225], Proposition 1.111. Here,
for the sake of simplicity, we neglect nonlinear estimates obtained in [64, 229],
[531, Sect.3.5], and [808]. The notion of (strong) slope due to De Giorgi et al.
[263] brought noteworthy improvements for decrease principles. See [46] and the
comprehensive surveys [53,54,531].

The method of penalization is a widely used process (see [393, 692], for
example). It was introduced in nonsmooth analysis by loffe [512, 515, 516] and
Fabian [363] in order to get decoupling conditions for sums. A similar method
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was used for the study of Hamilton—Jacobi equations by Crandall and Lions [244].
The notions of stabilized infimum and robust minimizer were detected by Aussel,
Lassonde, and Corvellec in [46] under another terminology and used for nonsmooth
analysis; see also [137, 582, 615]. The presentation given here is new. See also
[511,530,531], in which a general condition is introduced and Proposition 1.127
is proved. The concept of coherence for a family of functions was introduced by
Toffe [530]. Its variant, called quasicoherence, is new. The terminology for these
new notions has varied, but they seem to be basic enough to take place here. They
are used in Chap. 4.

Metric regularity was initiated by Liusternik [693, 694] and developed in
[140, 303, 305, 514, 794]. The relationships between openness at a linear rate,
metric regularity, and pseudo-Lipschitz behavior partly detected in [305] were fully
disclosed in [794] and were completed with perturbation properties in [63, 140].
Other works have been revealed to the author in [531]; see also [319]. The use of
the Ekeland principle and the tools from nonsmooth analysis for metric regularity
was initiated in [511] and developed for the computation of tangent cones and
for optimality conditions in [111, 785, 789]; the terminology “metric regularity”
appeared in [788]. Openness at a linear rate is called “covering property with
bounded modulus” in the Russian literature. We do not adopt the latter terminology
because the term ‘“covering” already has two different meanings in topology.
Moreover, we save the term “modulus” for nonnegative functions on R that are
continuous at 0 and null at 0. The novelty and importance of the notion of Lipschitz-
like behavior justify the terminology “Aubin property” introduced by Rockafellar.
However, we keep the traditional one.

The theory of perturbations we adopt here as a convenient framework has proved
to be very fruitful, especially in the convex case (see Chap. 3 and [323,353,822,872],
for example).

In [551], Toffe and Zaslavski address a stronger form of well-posedness, close to
those considered in [999, 1000], with uniqueness and continuity of the performance
function. In their generic variational principle the decision space X is not supposed
to be complete, but the parameter space W is metrizable. Their method assumes
existence of an appropriate dense subset of the parameter space instead of relying
on the intrinsic sets W(r) we used in [808] and here. In [543-545, 552, 553] the
principle of [551] is applied to various constrained optimization problems, taking
into account the specific structure of each problem. The case of an explicitly
constrained convex program is considered in [863] with respect to the bounded-
Hausdorff topology; the results of [863] deal with specific notions of well-posedness
that cannot be derived from Tykhonov well-posedness, since they involve Levitin—
Polyak minimizing sequences that are not minimizing sequences when one adds to
the objective function the indicator function of the constraint set. The terminology
“strong minimizer” (resp. “strongly exposed”) is commonly used instead of “firm
minimizer” (resp. “firmly exposed”) but it may be misleading when a strong
topology and a weak topology are present.

In [318] a general approach to generic well-posedness is considered. Genericity
is reinforced, since the complement of the set of well-posed functions is shown to
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be o-porous; in a finite-dimensional space, this notion implies that the set is not
only meager but also negligible with respect to the Lebesgue measure (see [981]).
In [999, 1000] strong forms of well-posedness are related to differentiability of the
performance function in a general framework, and applications to the calculus of
variations are given. It is also shown there that such relationships have their origins
in classical papers of Smulian [898] and Asplund—Rockafellar [23].

The original proof of the Borwein—Preiss variational principle is more construc-
tive than the one we present here and in Chap. 2; see [128, 137,890]. A variant due
to Loewen and Wang [674] is presented in [8§90]. The Borwein—Preiss variational
principle brings slightly more precise information. However, the statement we
present is sufficient for the applications we have in view and provides localization
information. Its smoothness content, in particular the C I'and D! smooth cases, will
be expounded in the next chapter.



Chapter 2
Elements of Differential Calculus

If I have seen further, it is by standing on the shoulders of giants.

—Isaac Newton, letter to Robert Hooke, February 5, 1675

Differential calculus is at the core of several sciences and techniques. Our world
would not be the same without it: astronomy, electromagnetism, mechanics, opti-
mization, thermodynamics, among others, use it as a fundamental tool.

The birth of differential calculus is usually attributed to Isaac Newton and
Gottfried Wilhelm Leibniz in the latter part of the seventeenth century, with several
other contributions. The pioneer work of Pierre de Fermat is seldom recognized,
although he introduced the idea of approximation that is the backbone of differential
calculus and that enabled him (and others) to treat many applications. During the
eighteenth century, the topic reached maturity, and its achievements led to the
principle of determinism in the beginning of the nineteenth century. But it is only
with the appearance of functional analysis that it took its modern form.

Several notions of differentiability exist; they correspond to different needs or
different situations. The most usual one is the notion of Fréchet differentiability, that
is presented in Sect.2.4. However, a weaker notion of directional differentiability
due to Hadamard has some interest. We present it in Sect.2.3 as a passage from
the case of one-variable maps to the case of maps defined on open subsets of
normed spaces. Its study has an interest of its own and forms a basis for a
notion of subdifferential that will come to the fore in Chap.4 along with a notion
corresponding to the Fréchet derivative. For some results, differentiability does not
suffice and one needs some continuity property of the derivative. Besides classical
continuity, we consider a weaker continuity condition. The latter is seldom given
attention. Still, it will serve as preparation for the limiting processes considered in
Chap. 6.

The main questions we treat are the invertibility of nonlinear maps, its applica-
tions to geometrical notions, and its uses for optimization problems. The notions of
normal cone and tangent cones appearing for optimality conditions in fact belong

J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathematics 266, 117
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to the realm of nonsmooth analysis. Many practitioners are unaware of this—rather
like Moliere’s Monsieur Jourdain, who had been speaking prose all his life without
knowing it. We end the chapter with an introduction to the calculus of variations,
that has been a strong incentive for the development of differential calculus since
the end of the seventeenth century. Differentiability questions for convex functions
will be considered in the next chapter.

2.1 Derivatives of One-Variable Functions

The differentiation of one-variable vector-valued functions is not very different from
the differentiation of one-variable real-valued functions. In both cases, the calculus
relies on rules for limits. The aims are similar too. In both cases, the purpose
consists in drawing some information about the behavior of the function from some
knowledge concerning the derivative. In the vector-valued case, the direction of the
derivative takes as great importance as its magnitude.

2.1.1 Differentiation of One-Variable Functions

In this section unless otherwise mentioned, 7 is an open interval of Rand f: T — X
is a map with values in a normed space X.

Definition 2.1. A map f is said to be right-differentiable (resp. left-differentiable)
att € T if the quotient (f (¢ +s) — f(¢))/s has a limit as s — O, i.e., s — 0 with
s >0 (resp. as s — 0_, i.e., s — 0 with s < 0). These limits, denoted by f’ (r) and
f7(¢) respectively, are called the right and the left derivatives of f att.

When these limits coincide, f is said to be differentiable at t, and their common
value f7(r) is called the derivative of f at 1.

Thus f is differentiable at ¢ if and only if the quotient (f(r +s) — f(¢))/s has a
limit as s — 0, with s # 0, or equivalently, if there exist some vector v(= f'(¢)) € X
and some function r: 7’ :=T —t — X called a remainder such that r(s)/s — 0 as
s — 0, for which one has the expansion

) =fO)+ (" —t)v+r —1), (2.1)

as can be seen by setting s =t —1, r(0) = 0, r(s) = s~ (f(t +s) — f(¢)) —v for
seT'\{0}.
The following rules are immediate consequences of the rules for limits.

Proposition 2.2. If f,g: T — X are differentiable at t € T and A, € R, then
h:= Af+ ug is differentiable at t and its derivative at t is ' (1) = A f'(¢) + ug'(¢).
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Proposition 2.3. If f : T — X is differentiable at t € T, if Y is another normed
space and if A : X — Y is linear and continuous, then g := A o f is differentiable at
teTand g (t)=A(f (1))

Similar rules hold for right derivatives and left derivatives. We will see later a
more general composition rule (or chain rule). The following composition rule can
be proved using quotients as for scalar functions. We prefer using expansions as
in (2.1) because such expansions give the true flavor of differential calculus, i.e.,
approximations by continuous affine functions. Moreover, one does not need to take
care of denominators taking the value 0.

Proposition 2.4. If T, U are open intervals of R, if g : T — U is differentiable at
teT,andifh:U — X is differentiable at i := g(1), then f := ho g is differentiable
attand f'(7) = g ()W (u).

Proof. Let v:=H(u) and let o : T — R, B : U — X be such that a(r) — 0 as
t =71, B(u)—0asu—uwithg(t)—g(H) = —1)g'(F) + (t —1)o(t), h(u) —h(u) =
(u—u)v+ (u—u)PB(u). Then one has

f(t) = f(t) = h(g(t) — h(w) = (8(1) —m)v+ (g(r) —w)B(g(t))
= (t=0)g' @y + (t—D)a(t)v+ (r =1)(g'(D) + () B(8(1))-

Since g(¢) — u as t — 7, one sees that o/(r)v+ (g'(F) + o(1))B(g(r)) = 0 asr — 17,
so that f is differentiable at 7 and f'(7) = ¢'(7)v = g'(f)l' (w). O

Now let us devise a rule for the derivative of a product. It can be generalized to a
finite number of factors.

Proposition 2.5 (Leibniz rule). Let X, Y, Z be normed spaces and letb : X XY —Z
be a continuous bilinear map. Given functions f : T — X, g: T — Y that are
differentiable at t, the function h: r— b(f(r),g(r)) is differentiable at t and

(1) =b(f'(t),8(t)) +b(f(1),8'(t)).

Proof. By assumption, there exist some ¢ : (T —t) — X, B : (T —t) — Y satisfying
o(s) =0, B(s) — 0as s — 0 such that

fle+s)=f@)+sf () +sa(s),  glt+s)=g(t)+sg'(t) +sB(s).

Plugging these expansions into b and setting y(s) := b(o(s),g(r)) +b(f(t),B(s)) +
sb(a(s),B(s)), so that y(s) — 0 as s — 0, we get

h(t +5) = h(t) = sb(f'(¢),8(t)) +sb(f(1),8'(¢)) +57(s)

and s~ (h(t+5) = h(t)) = b(f'(1),8(1)) +b(f(1).8'(1))- 0
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2.1.2 The Mean Value Theorem

The mean value theorem is a precious tool for devising estimates. For this reason,
it is a cornerstone of differential calculus. Let us note that the elementary version
recalled in the following lemma is not valid when the function takes its values in a
linear space of dimension greater than one.

Lemma 2.6. Ler f : T — R be a continuous function on some interval T := [a,b]
of R, with a < b. If f is differentiable on (a,b) then there exists some ¢ € (a,b) such
that

f(b)—fla)=f'(c)(b—a).

Example. Let f: [0,1] — R? be given by f(¢) := (?,3) fort € T := [0,1]. Then
one cannot find every ¢ € int7T satisfying the preceding relation, since the system
2¢ =1, 3¢2 = 1 has no solution. O

Instead, a statement under the form of an inequality is valid.

Theorem 2.7. Let X be a normed space, T := [a,b] a compact interval of R, and
f:T—X, g: T — R continuous on T with right derivatives on (a,b) such that

| £L(0)|| < & (¢) for everyt € (a,b). Then
1£(b) = fla)ll < g(b) — g(a). 2.2)

Proof. 1t suffices to prove that for every given € > 0, b belongs to the set

Te:={teT:[f(t) - fla)l < g(t) —gla) +e(t—a)}.

This set is nonempty, since a € T, and closed, being defined by an inequality whose
sides are continuous. Let s :=supT; < b. Then s € T¢.

We first suppose f and g have right derivatives on [a,b) and we show that
assuming s < b leads to a contradiction. The existence of the right derivatives of
f and g at s yields some 6 € (0,b — s) such that

re(0,6]:>}’f(s—i_ri_f(S)—f:L(S) <§7 }g(s‘i'ri_g(s)_g;(s) Sg

It follows that for € (0, §] one has
If(s+r) =N <r|[fi)||+re/2, gls+r)—gls) =g (s) —re/2.

Therefore, since s € T; and H i (s)H <g\ (s),
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If(s+r)=fl@) <[ f(s+r) = f)+]f(s) = fa)l
<rgl(s)+re/2+g(s) —gla) +e(s—a)
<g(s+r)—gls)+re+g(s)—gla) +e(s—a)
<g(s+r)—gla)+e(s+r—a).

This string of inequalities shows that s+ r € T¢, a contradiction to the definition of s.
Thus b € T, and the result is established under the additional assumption that the
right derivatives of f and g exist at a (note that we may have s = a in what precedes).

When this additional assumption is not made, we take a’ € (a,b] and we apply
the preceding case to the interval [d, b]:

[£(8) = f(d)]| < g(b) — g(d).

Then passing to the limit as ' — a., we get the announced inequality. O

Remark. Since we allow the possibility that the right derivatives do not exist at
the extremities of the interval, we may assume that the derivatives do not exist (or
do not satisfy the assumed inequality) at a finite number of points of 7. To prove
this, it suffices to subdivide the interval into subintervals and to gather the obtained
inequalities using the triangular inequality. In fact, one can exclude a countable set
of points of 7', but the proof is more involved; see [197], [294, p.153].

Theorem 2.8. With the notation of Theorem 2.7, the estimate (2.2) holds when f
and g are continuous on T and have right derivatives on T \ D, where D is countable,
such that || f1.(1)|| < g/, (t) for everyt € T\ D.

The most usual application is given in the following corollary, in which we
take g(¢z) = mt for some m € Ry and ¢ € T. The Lipschitz property is obtained
on substituting an arbitrary pair ¢,¢’ (with r < ¢') for a, b.

Corollary 2.9. Let f: T — X be continuouson T := [a,b], let m € R, and let D be
a countable subset of T. Suppose that for allt € (a,b)\ D, f has a right derivative at
t such that Hfjr (1) H < m. Then f is Lipschitzian with rate m on T, and in particular,

() = f(a)]| <m(b—a).
The case m = 0 yields the following noteworthy consequence.

Corollary 2.10. Let f : [a,b] — X be continuous and such that f has a right

derivative f'. on (a,b)\ D that is null, D being countable. Then f is constant on
[a,b].

The purpose of obtaining estimates often requires the introduction of auxiliary
functions, as in the proof of the following useful corollary.
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Corollary 2.11. Let f: T — X be continuous on T := |a,D], letv € X, r € R, and
let D be a countable subset of T. Suppose [ has a right derivative on (a,b) \ D such
that f(t) € v+ rBx for everyt € (a,b)\ D. Then

f(b) e fla)+ (b—a)v+ (b—a)rBx.

Proof. Define h: T — X by h(t) := f(¢t) —tv. Then h is continuous and for ¢ €
(a,b)\ D one has ||, (1)|| = || £} (t) = v|| < r. Then Corollary 2.10 entails that

If(b) = f(a) = (b—a)v|| = [[h(b) = h(a)|| < (b—a)r,

an estimate equivalent to the inclusion of the statement. a

Remark. The terminology for the theorem stems from the fact that the mean value
v:=(b—a)~'(f(b)— f(a)) is estimated by the approximate speed v, with an error r
that is exactly the magnitude of the uncertainty of the estimate of the instantaneous
speed [ (1). Note that the shorter the lapse of time (b —a), the more precise the
localization of f(b) by f(a)+ (b— a)v. Thus, if you lose your dog, be sure to have a
rather precise idea of his speed and direction and do not lose time in pursuing him.

2.2 Primitives and Integrals

The aim of this subsection is to present an inverse of the differentiation operator.
In fact, as revealed by the Darboux property (Exercise 1), not all functions from
some interval 7 of R to a real Banach space X are derivatives. Therefore, we will
get a primitive g of a function f on T only if f is regular enough. Here we use the
following terminology.

Definition 2.12. A function g: T — X is said to be a primitive of f : T — X if g is
continuous and if there exists a countable subset D of T such that forallt € T \ D,
g is differentiable at t and g'(¢) = f(z).

Corollary 2.10 ensures uniqueness of g.

Proposition 2.13. [f g and g> are two primitives of an arbitrary function f : T —
X, then g1 — g is constant.

Proof. 1f g; and g, are two primitives of f, then there exist countable subsets D
and D, of T such that g; is differentiable on 7'\ D; and g(¢) = f(¢) forallt € T\ D;
(i =1,2). Then for the countable set D := D U D;, the continuous function g; — g»
is differentiable on 7' \ D and its derivative is O there; thus g; — g7 is constant. O

In order to construct g from f, we use an integration process. Such a process
is useful for many other purposes and is well known when X = R. Since we focus
on vector-valued functions, we are not too exacting about regularity assumptions, so
that we choose a construction that is simpler than the Lebesgue—Bochner integration
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theory. For most purposes, integrating continuous functions would suffice. However,
admitting simple discontinuities may be useful. The class we select is described in
the next definition.

Definition 2.14. A function f : T — X from a compact interval T := [a,b] of R to a
real Banach space X is said to be regulated if for all € [a,b) (resp.t € (a, b)), f hasa
limit on the right f(¢) := lim,— »~; f(r) (resp. on the left £(¢_) := lims—y; 5/ f(5)).

The function f is said to be a (right-) normalized regulated function if it is
regulated, if f(b) = f(b_), and if for all # € [a,b) one has f(t,) = f(¢).

Real-valued monotone functions, vector-valued continuous functions, and step
functions are regulated functions. Recall that f : T — X is a step function if there
is a finite sequence o := (sg,81,...,5) With so =a < s; < -+ < s5p = b, called a
subdivision of T, such that f is constant on each open interval (s;_1,s;) for i =
1,...,k. The step function f is said to be a (right-) normalized step function if f is
constant on [s;_y,s;) fori=1,...,k— 1 and on [s;_1,b]. We leave the proofs of the
following results as exercises (see [294]).

Proposition 2.15. Let X be a Banach space and let T be a compact interval of R.
A function f: T — X is regulated (resp. normalized regulated) if and only if it is the
uniform limit of a sequence (f,) of step functions (resp. normalized step functions).

It follows that a regulated function on 7 is bounded. Moreover:

Proposition 2.16. For every regulated function f : T — X, the set f(T) is relatively
compact in X (i.e., cI(f(T)) is compact). Moreover, the set of discontinuities of f is
at most countable.

The next statement can be either derived from Proposition 2.15 or proved directly
(see [294]).

Proposition 2.17. The space R(T,X) (resp. Ry(T,X)) of regulated functions (resp.
normalized regulated functions) from a compact interval T to a Banach space X
endowed with the norm ||-||, given by || f||.. := sup,ez || £ ()| is a Banach space.

The integral of a step function f can be defined unambiguously as follows: if
so=a<sy <--<sg=bissuchthat f(t) =c; fort € (s;_1,s;), i € N, then

/Tf:: /abf(t)dt :—é(siﬂ—sz')cz:

It is easy to show that this element of X does not depend on the subdivision of 7.
Moreover, for every step function f from T to X, the triangle inequality ensures that

| [A] < e-ansi. 0

Since the space S(7,X) of step functions is dense in the space R(T,X), the map
f = [ f can be extended by continuity from S(7,X) to R(T,X):
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/leim/f,, if f=1limf,, f,€S(T.X).
T n Jr n

This extension is linear, continuous, and with norm b — a, since (2.3) remains valid
for f € R(T,X). Moreover, given a < b < ¢ in R, for all f € R([a,c],X) one has

Chasles’s relation
c b C
[o=fr s
a Ja Jb

It easily follows from the case of step functions by a passage to the limit.

The following composition property is crucial: using continuous linear forms
x* on X, it enables one to uniquely determine the integral of a regulated function
f € R(T,X) with the help of the integrals of the real-valued functions x* o f.

Proposition 2.18. Given Banach spaces X, Y and A € L(X,Y), for every [ €
R(T,X)onehasAof € R(T,Y) and [y Ao f=A([; f).

Proof. The first assertion is a direct consequence of the definition. It can also be
checked by taking a sequence (f,) in S(7,X) that converges uniformly to f. Since
the relation [;Ao f, = A([f; f) is immediate, the second assertion follows from
the definition of the integral of Ao f as lim [; A o f,, since (A(f; f»)) = A(f7 f), A
being continuous and ( [; f,) converging to [, f. O

The next result gives a partial inverse of the differentiation operator.
Theorem 2.19. For f € R(T,X), themap g :t — [\ f(s)ds is a primitive of f on T.

Proof. Givent € [a,b), € >0, let 6 € (0,b—1) be such that || f(t+7) — f(t3)|| <
¢ for every r € (0,8]. Since for ¢ := f(t;) one has [ ¢ = re, it follows from
Chasles’s relation and (2.3) that
t+r
=) v

|[ [ rn

This relation shows that g :  — [ f(s)ds has a right derivative at + whose value is
c. Similarly, if € (a,b], then g has f(¢_) as a left derivative at ¢. Therefore, if f is
continuous at ¢ € (a,b), then g is differentiable at t and g'(r) = f(z). Since the set
D of discontinuities of f is countable, we get that g is differentiable on 7'\ D with
derivative f. Moreover, g is continuous on 7T in view of Chasles’s relation and (2.3).

O

<re.

Corollary 2.20. If f : T — X is continuous, then g : t — [} f(s)ds is of class C'
(i.e., differentiable with a continuous derivative) and its derivative is f.

Let us give two rules that are useful for the computation of primitives.

Proposition 2.21 (Change of variables). Let h: S = [a, ] — R be the primitive
of a regulated function B’ such that h(S) C T and let f € R(T,X). If either f is
continuous or h is strictly monotone, then s — h'(s) f(h(s)) is regulated and for all
r € [a, B] one has
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T h(r)
| /a W) ((5))ds = /h o [0 2.4)

Proof. When f is continuous, since 4 is continuous, f o/ is continuous and then
k:svws h(s)f(h(s)) is regulated; the same is true when # is either increasing or
decreasing. Then the left-hand side of equality (2.4) is the value at r of the primitive
J of k satisfying j(a) = 0. The right-hand side is g(h(r)), where g is the primitive
of f satisfying g(h(a)) = 0. Under each of our assumptions, for a countable subset
D of S, the derivative of gohat r € S\ D exists and is 7' (r)g'(h(r)) = I’ (r) f(h(r)).
The uniqueness of the primitive of k null at o gives the equality. O

Proposition 2.22 (Integration by parts). Let X, Y, and Z be Banach spaces, let
(x,y) = x*y be a continuous bilinear map from X XY into Z, and let f : T — X,
g: T — Y be primitives of regulated functions, with T := [a,b]. Then

b b
| 1050 = 16 250) = f(@) (@)~ [ £/0) g0

Proof. The functions 1 — f(t) * g'(¢) and t — f’(r) * g(t) clearly have one-sided
limits at all points of T := [a,b]. Moreover, their sum is the derivative of A : t —
f(t)xg(¢) on T\ D, where D is the countable set of nondifferentiability of f or g.
Thus the result amounts to the equality [”#'(r)dr = h(b) — h(a), which stems from
the uniqueness of the primitive of /' that takes the value 0 at a. O

Exercises

1. (Darboux property) Show that the derivative f of a differentiable function g :
T — R satisfies the intermediate value property: given a,b € T with f(a) < f(b)
and r € (f(a), f(b)), there exists some ¢ between a and b such that f(c) = r.

2. Show that there exist a continuous function f : R — R and two continuous
functions g, go whose difference is not constant and are such that g; and g, are
differentiable on R\ N, where N is a set of measure zero, with g} (t) = g5(t) = f(r)
for all r € R\ N. [Hint: Take f =0, g; = 0 and for g, take an increasing function
whose derivative is 0 a.e.]

3. Prove Theorem 2.8. [See [197,294].]
4. Prove Proposition 2.15. [See [294, 7.6.1].]

5. Show that every (right-) normalized step function on T := [a,b] can be written
as a linear combination of the functions (e );cr given by e, = 1, and for 7 € [a,b),
e/(r) =1forr € [a,t), e,(r) =0 for r € [t,b]. Give a generalization to the case of
step functions taking their values in a normed space.
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6. A function v: 7 — X from an interval T := [a,b] of R to a normed space
X 1is said to be of bounded variation if there exists some ¢ € Ry such that for
every subdivision o := (so,s1,...,5¢) of T one has Xj<;<||v(si) —v(si1)| < ec.
The infimum of such constants ¢ is denoted by V”(v) and called the variation of v
on [a,b].

(a) Prove that the space BV(T,X) of functions of bounded variation on 7 forms a
normed space for the norm v i ||v||gy 7 x) := [[v(a) || + Vh(®v).

(b) Show that a function of bounded variation is regulated.

(¢) Show that Lipschitzian functions with values in X and monotone functions with
values in R are of bounded variation.

(d) Check that the function f defined by £(0) := 0, f(x) := x*sin(1/x?) for x €
R\ {0} is not of bounded variation on T := [0, 1] although it has a derivative at
each point of 7'.

(e) Givena < b < cin R and v € BV([a,c],X), show that V¢(v) = V2(v) + V< (v)
and that s — V$(v) is a nondecreasing function.

(d) Prove that for all v € BV(T) := BV(T,R) there exist nondecreasing functions
v1,vo such that v = vy — v,. [Hint: Take vy := (1/2)(w+v), va := (1/2)(w—v)
with w(r) :=V)(v) fort € T.]

7. (Stieltjes integral) Given a function v € BV(T) := BV(T,R) for T := [a,b]
and a (right-) normalized step function f from 7 to a Banach space X, let I,(f) :=
Z<iciVid (v)e; if f i= Zy<i<xcie;;, where ¢; € X and ey, is defined as in Exercise 5.

(a) Show that /,(f) does not depend on the decomposition of f. Check that
1L, < VW) I£]]...

(b) Deduce from the inequality above that the map f +— I,(f) can be extended
to a linear map from the space R, (T,X) of normalized regulated functions with
values in X into X satisfying the same inequality. This map is called the Stieltjes
integral of f relative to v.

(c) Conversely, given a continuous linear form f* on the space R,(T) := R,(T,R),
let v(¢) := f*(es), where ¢, is defined in Exercise 5. Show that v is of bounded
variation on T and that V(v) < ||f*].

(d) Deduce from what precedes a correspondence between the (topological) dual
of the space R, (T) and the space BV(T'). [See [692].]

2.3 Directional Differential Calculus

Now let us consider maps from an open subset W of a normed space X into another
normed space Y. A natural means of reducing the study of differentiability to the
one-variable case consists in taking restrictions to line segments or regular curves
inW.



2.3 Directional Differential Calculus 127

Definition 2.23. Let X, Y be normed spaces, let W be an open subset of X, let
xe€W,andlet f: W — Y. We say that f has a radial derivative at X in the direction
ue X if (1/t)(f(x+1tu) — f(x)) has a limit as 7 — 0. We denote by f/(X,u) or
d,f(x,u) this limit. If f has a radial derivative at X in every direction u, we say
that f is radially differentiable at %. If, moreover, the map D, f (%) : u +— d,f(X,u) is
linear and continuous, we say that f is Gdteaux differentiable at X and call D,.f(X)
the Gateaux derivative of f atX.

One often says that f is directionally differentiable at X, but we prefer to keep
this terminology for a slightly more demanding notion that we consider now. In
fact, although the notion of radial differentiability is simple and useful, it has several
drawbacks; the main one is that this notion does not enjoy a chain rule. This variant
does enjoy such a rule and reflects a smoother behavior of f when the direction u is
submitted to small changes.

Definition 2.24. Let X,Y be normed spaces, let W be an open subset of X, letx € W,
and let f: W — Y. We say that f has a directional derivative at X in the direction
u € X, or that f is differentiable at X in the direction u, if (1/¢)(f(x+1v) — (X))
has a limit as (r,v) — (04,u). We denote by f'(x,u) or df(x,u) this limit. If f
has a directional derivative at X in every direction u, we say that f is directionally
differentiable at x. If, moreover, the map f’(x) := Df(x) : u — f'(x,u) is linear and
continuous, we say that f is Hadamard differentiable at X.

The concepts of directional derivative and radial derivative are different, as the
next example shows. Thus, it is convenient to dispose of two notations.

Example-Exercise. Let f: R — R be given by f(r,s) = (r* +s%)~'rs for (r,s) €
R?\ {(0,0)}, £(0,0) = 0. It is Gateaux differentiable at (0,0) but not directionally
differentiable at (0,0). O

The (frequent) use of the same notation for the radial and directional derivatives
is justified by the following observation showing the compatibility of the two
notions.

Proposition 2.25. [f X and Y are normed spaces, if W is an open subset of X and
if f:W — Y has a directional derivative at X in the direction u, then it has a radial
derivative at X in the direction u and both derivatives coincide. In particular, if f is
Hadamard differentiable at X, then it is Gdteaux differentiable at X.

Conversely, if f is Lipschitzian on a neighborhoodV of X, then f is directionally
differentiable at X in every direction u in which f is radially differentiable.

Proof. The first assertions stem from an application of the definition of a limit.

Let us prove the converse assertion. Let k be the Lipschitz rate of f on V and
let u € X be such that f is radially differentiable at X in the direction u. Setting
r(t,v) i= f(X+1v) — f(X) —tf.(%,u), we have t~'r(t,u) — 0 as t — 0, and since
e (et v) = r(w) || = || (F xR+ 1v) — f(x+1w))|| < kv —ul| = 0 as (1,v) —
(04, u), we get t~'r(t,v) — 0 as (¢,v) — (04, u). O
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While radial differentiability of f at ¥ in the direction u is equivalent to
differentiability of the function fx, : t — f(X+tu) at 0, directional differentiability
of f at X amounts to differentiability of the composition of f with curves issued
from X with the initial direction u, as the next proposition shows.

Proposition 2.26. The map f:W — Y is differentiable at X in the direction u € X \
{0} if and only if f is radially differentiable at X in the direction u and for every T >0
and every (continuous) ¢ : [0,t] — W that is right differentiable at 0 with ¢, (0) = u,
¢(0) =X, the map f oc is right differentiable at 0 and (f o c)', (0) = d, f (X, u).

Proof. Suppose f is differentiable at X in the direction u € X. Given 7 > 0 and
¢ :[0,7] — W that is right differentiable at 0 with ¢/, (0) = u and ¢(0) =X, let us set
v :=(1/1)(c(t) — ¢(0)), so that vy — u as t — 0. Then

f(C(t))—tf(C(O)) _ f(%+tv2)—f(7f) S dfFu)ast =0,

Now let us prove the sufficient condition. Suppose f has a radial derivative at X in
the direction u but is not differentiable at X in the direction u # 0. There exist € > 0
and some sequence (,, u,) — (04, u) such that X+ t,u,, € W for all n € N and

H Fx+taun) — £() Se 2.5)

In

- dl‘f()_cvu)

We may assume that #,1; < (1/2)t,. Then let us define c : [0,7)] — X by ¢(0) :=%,
c(t) ==X+ (tn = ta1) " [(tn = O)tns1ttn 1 + (1 =ty 1 Yintt]

for ¢ € [ty41,2,). Then one sees that (1/7)(c(t) —c(0)) — u as t goes to 0, but since
c(ty) = X+ tyuy, in view of (2.5), foc is not differentiable at O with derivative
drf(x,u). O

Corollary 2.27. Let X, Y be normed spaces, let T, W be open subsets of R and X
respectively, let ¢ : T — X be differentiable att € T and let f : W — Y be Hadamard
differentiable at X € W and such that ¢(T) C W, X = c(f). Then f oc is differentiable
att and

(foo)(f) =DfF)(c (D))

Thus, Df(X) appears as the continuous linear map transforming velocities.

It is easy to show that every linear combination of maps having radial (resp.
directional) derivatives at X in some direction u has a radial (resp. directional)
derivative at X in the direction u. In particular, every linear combination of
two Gateaux (resp. Hadamard) differentiable maps is Gateaux (resp. Hadamard)
differentiable. One also deduces from Proposition 2.3 that if f has a directional
(resp. radial) derivative at X in the direction # and if A : Y — Z is a continuous linear
map, then A o f has a directional (resp. radial) derivative at X in the direction u and

(Ao f)(X,u) = A(f'(¥,u)).
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The preceding example—exercise shows that the composition of two radially dif-
ferentiable maps is not necessarily radially differentiable. However, one does have
a chain rule for directionally differentiable maps. These facts show that Hadamard
differentiability is a more interesting property than Gateaux differentiability.

Theorem 2.28. Let X, Y, Z be normed spaces, let U and V be open subsets of X
andY respectively, andlet f :U — Y, g:V — Z be directionally differentiable maps
atx €W := f~1(V)andy := f(xX) € V respectively. Then h := go f is directionally
differentiable at X and

d(gof)(xu) =dg(f(x),df (x,u)).

In particular, if f is Hadamard differentiable at X and g is Hadamard differentiable
aty := f(X), then h := go f is Hadamard differentiable at X and

D(go f)(x) = Dg(y) o Df (%).

Proof. More generally, let us show that if f has a directional derivative at X in the
direction u € X and if g has a directional derivative at f(%) in the direction v :=
df(x,u), then h:= go f has a directional derivative at X in the direction u. For (¢,u’)
close enough to (0,u) one has X +tu’ € W. Let g(¢,u') := (1/1)(f(xX+ 1) — f(X)).
Then g(¢,u') — v:=df(x,u) as (t,u’) — (04,u). Therefore

h(x—i_t“;) —]’l()_C) — g(y—i_tq(tvtu/)) _g(y) —>dg(i,v) as (t,l/l/) N (O+7M).

The statement can also be proved using Proposition 2.26. O

The notion of radial differentiability is sufficient to get a mean value theorem.
Recall that the segment [a,b] (respectively (a,b)) with endpoints a,b in a normed
space is the set {(1 —¢)a+1tb:1 € [0,1]} (respectively {(1 —¢t)a+1tb:t € (0,1)}).

Proposition 2.29. If f: W — Y is radially differentiable at each point of a segment
[w,x] contained in W, then

/() = fw)ll < sup |ldf(w+1(x—w),x—w)].
t€(0,1)

Proof. Leth:[0,1] =Y be givenby h(t) := f((1 —t)w-+tx); it is right differentiable
on (0, 1), with right derivative 7, (1) = d, f((1 —t)w+tx,x — w), and continuous on
[0,1]. Corollary 2.9 then yields the estimate. O

A variant can be deduced when f is Gateaux differentiable at each point of S :=
(a,b), since then one has ||d,.f (z,x — w)|| < ||D,f(2)|| - | x— w| forallz€ S, w,x € X.

Proposition 2.30. Let X and Y be normed spaces, let W be an open subset of X
containing the segment [w,x|, and let f : W — Y be continuous on [w,x| and Gateaux
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differentiable at each point of S := (w,x), with m := sup,c¢||D,f(z)|| < +oo. Then
one has

1FG0) = F < mlx—wll.

Corollary 2.31. Let X and Y be normed spaces, let W be a convex open subset of
X, and let f : W — Y be Gdteaux differentiable at each point of W and such that
for some ¢ € R one has ||D.f(w)| < c for every w € W. Then f is Lipschitzian with
rate c: for all x,x' € W one has

1£00) = £ < e [l =]

In particular, if D,f(w) = 0 for every w € W, then f is constant on W. Such
a result is also valid if W is connected instead of convex. An extension of the
estimate of Proposition 2.30 is also valid in the case that W is connected, provided
one replaces the usual distance with the geodesic distance dw in W defined as in
Exercise 5.

In the usual case in which Xy = X, the following corollary gives an approximation
of f in the case that one has an approximate value of the derivative of f around x.

Corollary 2.32. Let X and Y be normed spaces, let Xy be a linear subspace of X,
let W be a convex open subset of X, and let f : W — Y be Gdteaux differentiable
at each point of W and such that for some ¢ € R and some { € L(Xy,Y) one has
|Dyf (x)(u) — £(u)|| < c||ul| for every x € W, u € Xo. Then for every x,x' € W such
that x — x' € Xy, one has

1) = £ — =) | < e le— ]

This result (obtained by changing f into f — ¢ in the preceding corollary) will
serve to get Fréchet differentiability from Gateaux differentiability. For the moment,
let us point out another passage from Gateaux differentiability to Hadamard
differentiability.

Proposition 2.33. Let W be an open subset of X. If f : W — Y is radially
differentiable on a neighborhood V of X in W and if for some u € X \ {0}, its
radial derivative d,f : V x X — Y is continuous at (X,u), then f is directionally
differentiable at X in the direction u.

In particular, if f is Gdteaux differentiable on V and if d,f : V xX — Y is
continuous at each point of {x} x X, then f is Hadamard differentiable at X.

Proof. Without loss of generality, we may suppose u has norm 1. Given € > 0, let
6 € (0,1) be such that ||f](x,v) — fi(%,u)|| < € for all (x,v) € B(X,26) x B(u,d),
with B(%,20) C V. Setting r(t,v) := f(X+1tv) — f(X) — 1 f/(X,u), we observe that
for every v € B(u,d) the map r, := r(-,v) is differentiable on [0,8] and ||7,(¢)|| =
lfi(x+1tv,v) — fi(x,u)|| < €. Since r,(0) = 0, Corollary 2.9 yields ||r(z,v)| < ez.
That shows that f has f/(x,u) as a directional derivative at X in the direction u. The
last assertion is an immediate consequence. O
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The importance of this continuity condition leads us to introduce a definition.

Definition 2.34. Given normed spaces X,Y and an open subset W of X, a map
f:W —Y is said to be of class D' at w (resp. on W) if it is Hadamard differentiable
around W (resp. on W) and if df : W x X — Y is continuous at (w,v) for all v € X
(resp. on W x X). We say that f is of class D* with k € N, k > 1, if f is of class D!
and if df is of class D¥~!.

We denote by D'(W,Y) the space of maps of class D! from W to Y and by
BD'(W,Y) the space of maps f € D!(W,Y) that are bounded and such that f" is
bounded from W to L(X,Y). Let us note the following two properties.

Proposition 2.35. For every f € D' (W.,Y) the map f' :w — Df(w) :=df(w,-) is
locally bounded.

Proof. Suppose, to the contrary, that there exist w € W and a sequence (wy,) — w
such that (r,) := (||Df(wn)||) = oo. For each n € N one can pick some unit vector
U, € X such that ||df(wp,u,)| > r, — 1. Setting (for n € N large) x,, := r; 'u,, we
see that ((wy,x,)) — (w,0) but (||df(wn,x,)||) — 1, a contradiction. O

Corollary 2.36. Let f: W — Y be a Hadamard (or Gateaux) differentiable func-
tion. Then f is of class D' if and only if f' is locally bounded and for all u € X
the map x — f'(x)u is continuous. In particular, if Y = R and if f € D'(W,R),
the derivative is continuous when X* is provided with the topology of uniform
convergence on compact sets (the bw* topology).

Proof. The necessary condition stems from the preceding proposition. The suffi-
cient condition follows from the inequalities

£/ )y = || < |[f W) =) ||+ [[f (W) = f' ()ul| < me/(2m) +e/2=¢,

when for some m > 0 and a given € > 0 one can find a neighborhood V' of x in
W such that ||f'(w)|| <m forw eV and | f'(w)u— f'(x)u|| <e/2 forweV,we
B(u,g/2m). O

Proposition 2.37. If X,Y,Z are normed spaces, if U and V are open subsets of X
and Y respectively, and if f € D' (U,Y), g € D'(V,Z), then h:= go f € D"(W,Z)
forw = f~1(v).

Proof. This conclusion is an immediate consequence of the formula dh(w,x) =
dg(f(w),df(w,x)) forall (w,x) e W x X. O

Under a differentiability assumption, convex functions, integral functionals, and
Nemitskii operators are important examples of maps of class D'.

Example (Nemitskii operators). Let (S, %, 1) be a measure space, let X, ¥ be
Banach spaces, let f: S x X — Y be a measurable map of class D' in its second
variable and such that g : (s,x,v) — dfy(x,v) is measurable, f; being the map
x — f(s,x). Then, if for p,q € [1,4o0), the Nemitskii operator F : L,(S,X) —
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Ly(S,Y) given by F(u) := f(-,u(-)) for u € L,(S,X) is well defined and Géateaux
differentiable, with derivative given by D,F (u)(v) = df(-,u(-),v(:)), then F is of
class D'. This follows from the following result applied to g := df(-,u(-),v(-))
(see [37]).

Lemma 2.38 (Krasnoselskii’s theorem). Let (S,.%, 1) be a measure space, let
W.,Z be Banach spaces, and let g : S x W — Z be a measurable map such that
for all s € S\ N, where N has null measure, the map g(s,-) is continuous. If for
some p,q € [1,40) and all u € L,(S,W) the map g(-,u(-)) belongs to Ly(S,Z),
then the Nemitskii operator G : L,(S,W) — L,(S,Z) given by G(u) := g(-,u(-)) for
u € L,(S,X) is continuous.

Exercises

1. Let X,Y be normed spaces and let W be an open subset of X. Prove that
f:W =Y is Hadamard differentiable at x if and only if there exists a continuous
linear map ¢ : X — Y such that the map g, given by ¢;(v) := (1/1)(f(x+tv) — f(X))
converges to £ as t — 0., uniformly on compact subsets of X. Deduce another proof

of Proposition 2.50 below from this characterization.

2. Prove that if f: W — Y is radially differentiable at X in the direction u and if
f is directionally steady at X in the direction u in the sense that (1/7)(f(x+1v) —
fx+1tu)) — 0as (t,v) = (04,u), then f is directionally differentiable at X in the
direction u. Give an example showing that this criterion is more general than the
Lipschitz condition of Proposition 2.25.

3. Let f: R? — R be given by f(r,5) := r’s(r* +s)~! for (r,s) € R*\ {(0,0)},
(0,0) = 0. Show that f has a radial derivative (which is in fact a bilateral derivative)
but is not Géteaux differentiable at (0,0).

4. Let E be a Hilbert space and let X := D'(T,E), where T := [0,1]. Endow X
with the norm |[|x|| := sup,cy [|x(?)|| + sup,er [|¥/(7)||. Define the length of a curve
x:[0,1] = E by

(0= [ Wl

(a) Show that ¢ is a continuous sublinear functional on X with Lipschitz rate 1.

(b) Let W be the set of x € X such thatx’(z) # 0 for all 7 € [0, 1]. Show that W is
an open subset of X and that ¢ is Gateaux differentiable on W.

(c) Show that ¢ is of class D! on W [Hint: Use convergence results for integrals.]
In order to prove that £ is of class C! one may use the following questions.

(d) Let Eg:= E\ {0} and let D : Ey — E be given by D(v) := ||v||~'v. Given
u,v € E show that | D(u) — D(v)|| < 2]|ul|~"|lu—v].

(e) Deduce from the preceding inequality that ¢’ is continuous.
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5. Prove the assertion following Corollary 2.31, defining the geodesic distance
dw (x,x") between two points x,x’ of W as the infimum of the lengths of curves
joining x to x'.

6. Prove that if f: W — Y has a directional derivative at some point X of the open
subset W of X, then its derivative Df(X) : u — d f(X,u) is continuous if it is linear.

7. Prove Proposition 2.29 by deducing it from the classical mean value theorem
(Lemma 2.6) for real-valued functions, using the Hahn-Banach theorem. [Hint:
Take y* with norm one such that (y*,y) = ||y|| for y := f(x) — f(w), set g(¢) :=
(v, f(x+1(w—x))), and pick 6 € (0,1) such that g(1) — g(0) = ¢, (6).]

8. Show that the norm x — ||x|| := sup,cy |x(¢)| on the Banach space X := C(T") of
continuous functions on 7 := [0, 1] is Hadamard differentiable at X € X if and only
if the function ¢ — |x(¢)| attains its maximum on 7 at a single point.

9. (a) Leta,b be two points of a normed space X. Show that the function g given
by g(t) := ||a+tb|| has a right derivative and a left derivative at all points

of R.
(b) Let f: T — X, where T is an interval of R. Show that if f has a right
derivative f7 (r) at some t € T, then go f has a right derivative at 7 and

(go)i() <[/ (0)]-

10. Use the preceding exercise to deduce a mean value theorem from Lemma 2.6.

2.4 TFréchet Differential Calculus

Nonlinear maps are difficult to study. The main purpose of differential calculus con-
sists in getting some information using an affine approximation to a given nonlinear
map around a given point. Of course, the meaning of the word “approximation” has
to be made precise. For that purpose, we define remainders. Fréchet differentiability
consists in an approximation by a continuous affine map.

Definition 2.39. Given normed spaces X and Y, we denote by o(X,Y) the set of
maps 7: X — Y such that r(x)/||x|| = 0 asx — 0in X \ {0}. The elements of 0(X,Y)
will be called remainders.

Thus, r: X — Y is a remainder if and only if there exists some map o : X — Y
satisfying a(x) — 0 as x — 0 and r(x) = ||x]| a:(x). Moreover, r € o(X,Y) if and
only if there exists a modulus i : Ry — Ry U{+eo} such that ||r(x)|| < p(|lx|]) [1x|l
(recall that i : Ry — Ry U{+eo} is a modulus when p is nondecreasing, i (0) =0,
and u is continuous at 0). Such a case occurs when there exist ¢ > 0 and p > 1 such
that ||7(x)|| < c¢||x||”. Following Landau, remainders are often denoted by o(-), and
different remainders are often denoted by the same letters, since they are considered
as inessential for the assigned purposes.
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If r,s : X — Y are two maps that coincide on some neighborhood V of 0 in X,
then s belongs to o(X,Y) if and only if r belongs to o(X,Y). Thusif p: V — Y is
defined on some neighborhood V of 0 in X, we consider that p is a remainder if
some extension r of p to all of X is a remainder. The preceding observation shows
that this property does not depend on the choice of the extension.

The following result is a direct consequence of the rules for limits.

Lemma 2.40. For every pair of normed spaces X .Y, the set o(X,Y) of remainders
is a linear space.

The class of remainders is stable under composition by continuous linear maps.

Lemma 2.41. For all normed spaces W, X, Y, Z, for every r € o(X,Y) and all
continuous linear maps A: W — X, B:Y — Z one has roA € o(W,Y) and Bor €
0(X,Z) (hence BoroA € o(W,Z)).

Proof. Let a: X — Y be such that o(x) — 0 as x — 0 and r(x) = ||x|| &t(x). Then
if A: W — X is stable at 0, i.e., is such that there exists some ¢ > 0 for which
lA(w)|| < c||w|| for w in a neighborhood of 0 in W, in particular if A is linear and
continuous, then one has ||[r(A(w))|| = |A(W)|||a(A(w))|| < c|w|| ||e(A(w))]|| and
o(A(w)) > 0asw— 0, so that roA € o(W,Y). Similarly, if B: Y — Z is stable at 0,
then Bor € o(X,Z). The assertion about Bo roA is a combination of the two other
cases. a

The proof of the next lemma is an easy consequence of the rules for limits.

Lemma 2.42. Given normed spaces X, Y,....Y;, Y : =Y xX--- XY, amapr:X —
Y is a remainder if and only if its components ry, ..., ry are remainders.

We are ready to define differentiability in the Fréchet sense; this notion is so
usual that one often writes “differentiable” instead of “Fréchet differentiable.”

Definition 2.43. Given normed spaces X, Y and an open subset W of X, a map
f W =Y is said to be (Fréchet) differentiable (or firmly differentiable, or just
differentiable) at X € W if there exist a continuous linear map ¢ : X — Y and a
remainder r € o(X,Y) such that for x € W one has

f(x)=fE) +L(x—%) +r(x—X%). (2.6)
It is often convenient to write the preceding relation in the form
FE+u) = fx) = L) +r(u)

for u close to 0. Here the continuous affine map x — f(X) + ¢(x — X) can be viewed
as an approximation of f that essentially determines the behavior of f around X. The
continuous linear map ¢ is called the derivative of f at X and is denoted by Df(X)
or f/(x). It is unique: given two approximations £, ¢, of f(x+ -) around 0 and two
remainders ry,r such that f(X+u) — f(%) = €1 (u) + ri(u) = €2 (u) + r2(u), one has
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{1 = {p, since ¢ := ¢} — {5 is the remainder r := r, — ry; in fact, for every u € X and
every ¢t > 0 small enough, one has

1 1
L(u) = ?r(tu) = ;oc(tu) lru|] = ou(tu) ||u|| — 0 as t — 0,

so that £(u) =0. Thus L(X,Y)No(X,Y) = {0}. Uniqueness is also a consequence of
Corollary 2.50 below and of the fact that the directional derivative is unique, since
it is obtained as a limit.

When Y := R, the derivative Df(X) of f at X belongs to the dual X* of X. When
X is a Hilbert space with scalar product (- | -) it may be convenient to use the Riesz
isometry R : X — X* given by (R(x),y) = (x| y) to get an element V f (%) of X, called
the gradient of f at x, by setting Vf(¥) := R~ (Df(%)). It allows one to visualize
the derivative, but in some respects, it is preferable to work with the derivative.

Proposition 2.44. If f : W — Y is differentiable atx € W, then it is continuous at X.
Proof. This follows from the fact that every remainder is continuous at 0. a

Proposition 2.45. If f,g: W — Y are differentiable atx € W, then for every A, L €
R the map h:= A f + ug is differentiable at X and Dh(X) = ADf(X) + uDg(X).

Proof. 1f r(x) := f(X+x) — f(X) = /(%) (x), s(x) := g(¥+x) — g(¥) — ¢'(X)x, one
has h(x+x) = h(X) + A f(X)(x) + png'(x)(x) + £(x), where t :== Ar+ s € o(X,Y).
Thus £ is differentiable at X and /' (x) = A/ (X) + ng'(x). O

Examples. (a) A constant map is everywhere differentiable and its derivative is 0.

(b) A continuous linear map ¢ € L(X,Y) is differentiable at every point X and its
derivative at X is £ since £(X + x) = £(X) + £(x).

(c) A continuous affine map f := ¢+ c, where ¢ € L(X,Y) and ¢ € Y, is differenti-
able at every X € X and Df(x) = /.

(d) If f: X :=X; x X, =Y is a continuous bilinear map, then f is differentiable
at every point X := (X1,%) € X, and for x = (x,x»), one has Df(X)(x) =
%) + f(X1,x2), since f(X+x) — f(X) = f(x1,%2) + f(X1,x2) + f(x1,x2).
Here f is a remainder since ||f(x)| < |I£]l |lxillx2ll < [I£]l lx]]* whenever
Il = el := max ([, )

(e) If f: X — Y is a continuous quadratic map in the sense that there exists
a continuous bilinear map b : X x X — Y such that f(x) = b(x,x), then f
is differentiable at every point X € X and Df(X)(x) = b(X,x) + b(x,X) for
x € X. This follows from the chain rule below and the preceding example.
Alternatively, one may observe that r := f is a remainder, since for every x € X
one has || £(3)|| < [16l] x> and £(F+2) = £(F) +b(Ex) +b(x,7) + f(x).

() If f: T — Y is defined on an open interval T of R, then f is differentiable at
x € T if and only if f has a derivative at X and D f(X) is the linear map r +— rf’ (%),
whence f’(X) = Df(X)(1). The key point in this example is illuminated in the
following exercise. a
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Exercise. Show that for every normed space Y the space L(R,Y) is isomorphic
(and even isometric) to Y via the evaluation map ¢ — ¢(1), whose inverse is the map
vi— £, where ¢, € L(R,Y) is defined by ¢,(r) := rv for r € R. O

The following characterization will be helpful.

Lemma 2.46. Given an open subset W of X, a map f : W — Y is differentiable at
X if and only if there exists a map F : W — L(X,Y) that is continuous at X and such
that f(x) — f(X) = F(x)(x —X) forall x e W.

Proof. Suppose there is a map F : W — L(X,Y) continuous at X such that f(x) =
f(X) 4+ F(x)(x—x) forall x € W. Then f(x) — f(X) = F(X)(x —X) + r(x), where r is
the remainder defined by r(x) := (F (X+x) — F(X))(x), so that f is differentiable at X
and Df(xX) = F(x). To prove the converse, using the Hahn—Banach theorem, for x €
W we pick ¢, € X* such that || || = 1 and ¢,(x) = ||x||. Then, setting A := D f(X) and
writing the remainder r appearing in (2.6) in the form r(u) = ot(u)||u|| = oc(u)€, (u)
with o/(u) — 0 as u — 0, we get

FEFu) = (%) = (A+ o(u)lu) (w),

or f(x) — f(X) = F(x)(x—X) for F(x) :==A+ o(x —X)ly_x — A = F(X) as x —> X.
O

Let us give a chain rule. It is a cornerstone of differential calculus.

Theorem 2.47 (Chain rule). Let X, Y, Z be normed spaces, let U, V be open
subsets of X and Y respectively, and let f : U — Y, g :V — Z be differentiable at
X €U and y = f(X) respectively and be such that f(U) CV. Then h:=go f is
differentiable at X and

Dh(x) = Dg(y) o Df (%). 2.7)

Proof. Let £ :=Df(X), m:=Dg(y) and let r € 0o(X,Y), s € o(Y,Z) be defined by

r(x) == f(x+x) = (%) —(x),  s():=gF+y)—g() —my).

Then, setting y := £(x) + r(x) forx € U — 7%, so that f(X+x) =y +y, we get

h(x+x) = h(x) —=m(l(x)) = g(V+) = () —m(y —r(x)) = s(y) +-m(r(x)). (2.8)

Lemma 2.41 ensures that mor € o(X,Z). Now, given ¢ > ||{||, there exists some
p > 0 such that for x € B(0,p) one has ||r(x)|| < (c— |||])|lx|| and hence ||¢(x) +
r(x)|| < ¢||x||- Then the proof of Lemma 2.41 ensures that so (¢ +r) € o(X,Z). Thus,
the right-hand side so (¢ 4 r) +mor of (2.8) is a remainder, and we conclude that &
is differentiable at X with derivative the continuous linear map mo /. a

The following corollary is a consequence of the fact that the derivative of a
continuous linear map ¢ at an arbitrary point is £ itself.
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Corollary 2.48. Let X.,Y,Z be normed spaces, let U,V be open subsets of X and 'Y
respectively, andlet f:U — Y, g:V — Z be suchthat f(U) CV andleth:=gof.

(a) If f is differentiable at X and 'V :=Y, g € L(Y,Z), then h is differentiable at X
and Dh(X) = go Df(X).

(b) If gisdifferentiable aty:= f(X) and U :=X, f € L(X,Y), then h is differentiable
at X and Dh(x) = Dg(7) o f.

Corollary 2.49. The differentiability of f : W — Y (with W open in X) at X does not
depend on the choices of the norms on X and Y within their equivalences classes.

In fact, changing the norm amounts to composing with a continuous linear map.

Corollary 2.50. Let X,Y be normed spaces, let W be an open subset of X, and let
f W = Y If f is Fréchet differentiable atx € W, then f is Hadamard differentiable
atX. If X is finite-dimensional, the converse holds.

Thus, the mean value theorems of Sect.2.1.2 are in force for Fréchet differen-
tiability. Also, the interpretation of the derivative as a rule for the transformation of
velocities remains valid for the Fréchet derivative.

Proof. The first assertion follows from the definitions or from Theorem 2.47 and
Proposition 2.26.

Assuming that X is finite-dimensional, let us prove that if f is directionally
differentiable at X, and if its directional derivative f’(x,-) is continuous, then r
given by

r(w) = fE+w) — (F) - f(Ew)

is a remainder. Adding the assumption that f’(x,-) is linear will prove the converse
assertion. Suppose, to the contrary, that there exist € > 0 and a sequence (w;,) — 0
such that for all n € N, ||r(wy,)|| > €||wn||. Then t, := ||wy|| is positive; setting u,, :=
t'w,, we may suppose the sequence (u,) converges to some vector « of the unit
sphere of X. Then, given €’ € (0,¢€), we can find k € N such that for n > k we have
lf (x,un) — f'(x,u)|| < €—¢€, so that

||f()_c+tnun) —f(f) —t,,f/()_c,u)H > Ely ”Mn” —1Iy Hf/(xﬂ’tﬂ) —f/(f,u)H Z 8/tn7

a contradiction to the assumption that f is differentiable at X in the direction u. O

Another link between directional differentiability and firm differentiability is
pointed out in the next statement. A direct proof using Corollary 2.32 is easy. We
present a proof in the case that f” is continuous around X.

Proposition 2.51. If f is Gateaux differentiable on W and if f' W — L(X,Y) is
continuous atX € W, then f is Fréchet differentiable at X.

Proof. Without loss of generality, replacing Y by its completion, we may suppose Y
is complete; replacing W by a ball centered at X, we may also suppose W is convex.
Then for x € W one has f(x) — f(X) = F(x)(x —X) with
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1
Fx) ;:/O Df(x+1(x—3))dr,

and F' is continuous at X, so that the criteria of Lemma 2.46 apply. O

This result shows that it may be a sensible strategy to start with radial differen-
tiability in order to prove that a map is of class C', i.e., that it is differentiable with
a continuous derivative. For instance, if one deals with an integral functional

Ffx):= ./SF(s,x(s))ds,

where S is some measure space and x belongs to some space of measurable maps,
it is advisable to use Lebesgue’s theorem to differentiate inside the integral (under
appropriate assumptions) by taking the limit in the quotient

| _ 1 _ -

;[f(x—i— tu) — f(x)] = /S; [F(s,%(s) +ru(s)) — F(s,x(s))]ds.
Continuity arguments may be invoked later, for instance using Krasnoselskii’s
criterion.

Let us note other consequences of Theorem 2.47.

Proposition 2.52. Let X, Y1,...,Y, be normed spaces, let W be an open subset of
X, and let f:= (f1,....fn) : W =Y =Y x--- X Y,. Then f is differentiable at
X € W if and only if its components f; : W — Y; (i = 1,...,n) are differentiable at X
and forv € X,

DFE) () = (DFIE),....DAE) ).

Proof. Let p; : Y — Y; denote the ith canonical projection. If f is differentiable at X,
then Corollary 2.48 ensures that f; := p; o f is differentiable at ¥ and Df;(X) = p; o
Df(x). Conversely, suppose that fi,..., f, are differentiable at X. Let r; € o(X,Y;)
be given by r;(x) = fi(x+ x) — fi(X) — Df;(X)(x). Then by Lemma 2.42, we have
that r := (rq,...,m) € o(X,Y) and r(x) = f(X+x) — f(X) — £(x) for £ € L(X,Y)
given by {(x) := (Df1(X)(x),...,Dfn(X)(x)). Thus f is differentiable at X, with
derivative 4. ad

Now, let us consider the case in which the source space X is a product
X) x -+ x X, and W is an open subset of X. One says that f : W — Y has a
partial derivative at X € W relative to X; for some i € N,, if the map fiz : x; —
S(x1,.. ., Xi—1,Xi,Xit1,---,%,) is differentiable at X;. Then one denotes by D;f(x)
or %(E) the derivative of the map f;z at X;. Let j; € L(X;,X) be the insertion
given by ji(x;) := (0,...,0,x;,0,...,0). Since the map fix is just the composition
of the affine map x; — ji(x; — X)) + X = (X1,...,%i—1,Xi,Xi+1,-- -, %) With f, from
Corollary 2.48(b) and the fact that v = ji(vi) + -+ + ju(vs), while D;f(X) =
Dfix(%;) = Df(%) o ji, one gets the following proposition.
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Proposition 2.53. If f : W — Y is defined on an open subset W of a product space
X =X X --- XXy and if f is differentiable at X, then fori =1,. ..k, the map f has
a partial derivative at X relative to X; and

Vvi= vy, Df(x)(v) =D1f(X)vi+ -+ Dif(X)v.

When X :=R", Y :=R", the matrix (D;f;(X)) of Df(¥) formed with the partial
derivatives of the components ( f;) of f is called the Jacobian matrix of f atX.
It determines D f(X).

Note that it may happen that f has partial derivatives at X with respect to all its
variables but is not differentiable at X.

Example. Let f : R? — R be given by f(r,s) := rs(r> +s52)~! for (r,s) # (0,0)
and f(0,0) = 0. Since f(r,0) = 0 = f(0,s), f has partial derivatives with respect
to its two variables at (0,0). However, f is not continuous at (0,0), hence is not
differentiable at (0,0). O

1<j<n

Now let us introduce a reinforced notion of differentiability that allows us to
formulate several results with assumptions weaker than continuous differentiability.

Definition 2.54. Let X and Y be normed spaces, let W be an open subset of X, and
letx e W. Amap f: W — Y is said to be circa-differentiable (or peri-differentiable,
or strictly differentiable) at ¥ if there exists some continuous linear map ¢ € L(X,Y)
such that for every x,x’ € W one has

1/ () = f (&) = Lx =X

- — 0asx,x — X withx' #x. (2.9)
[l =]l

If Xy is a linear subspace of X, we say that f is circa-differentiable (or strictly
differentiable) at X with respect to Xy if there exists some continuous linear map
£ € L(Xo,Y) such that (2.9) holds whenever x,x’ € W satisfy x —x’ € Xj.

Let us relate the preceding notion to continuous differentiability. Taking x' = ¥ in
relation (2.9), one sees that if f is circa-differentiable at X, then f is differentiable at
Xand Df(X) = ¢.

Definition 2.55. The map f: W — Y will be said to be continuously differentiable
at X € W, or of class C! at X, and we write f € CL(W,Y), if f is differentiable on
some neighborhood V of X and if the derivative f' : V — L(X,Y) of f given by
f'(x) := Df(x) for x € V is continuous at . If f is of class C! at each point x of W,
then f is said to be of class C! on W and one writes f € C' (W,Y).

One says that f is of class CK with k € N, k > 1, if f is of class C! and if f’ is of
class C*~1. Then one writes f € CK(W,Y).

Proposition 2.56. Let X and Y be normed spaces, let W be an open subset of X
andletx e W. Amap f: W — Y that is differentiable on a neighborhood U C W of
X is circa-differentiable at X € W if and only if f € CL(W,Y).
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Proof. Suppose f € CL(W,Y) and let £ := Df(X). Given € > 0 one can find § > 0
such that B(¥,0) C W and for x € B(X,6) one has ||Df(x) —¢|| < &. Then using
Corollary 2.32, for x,x’ € B(x,8), one has

1£() = £ () — £ =) || < e || —x]],

so that f is circa-differentiable at X.

Conversely, suppose f is circa-differentiable at X and is differentiable on a
neighborhood V of X contained in W. Given u € X and € > 0, assuming that the
preceding inequality holds whenever x,x’ € B(x,8) C V, one gets for all x € B(X, §),
ucX

D)) = )| = fim =1 -+ ) = £5) = ) | < € ]

so that ||[Df(x) —£|| < € and f" : x+— Df(x) is continuous at X. O
We are now in a position to give a converse of Proposition 2.53.

Proposition 2.57. If f : W — Y is defined on an open subset W of a product space
X=X X--- XXy, iffori=1,....k, [ hasapartial derivative atx € W relative to X;,
and if f is circa-differentiable at X with respect to X1, ..., Xi_1,Xit1,. .., Xy, then f is
differentiable at X. In particular, if f has partial derivatives on some neighborhood
of X all of which but one are continuous at X, then f is differentiable at X.

Proof. Tt suffices to give the proof for k = 2; an induction yields the general case.

Thus, let f be circa-differentiable at X with respect to X; and have a partial
derivative at X relative to X,. The first assumption means that there exists some
¢y € L(X;,Y) such that for every € > 0 one can find some & > 0 such that
B(x,28) C W and for x := (x1,x2) € B(X,0), u; € X1, ||u1|| < & one has

£ (e +ur,x2) = fx1,22) — 6 () || < €] (2.10)
Setting ¢, := D, f(X) and taking a smaller § > 0 if necessary, we may suppose that
[f(®1,%2 +uz) — f(%1,3%2) — bo(u2) || < €fus|

for every u; € X; satisfying ||uz|| < 8. Then, taking (x,x2) := (¥1,%2 +u2) in (2.10)
with u := (u1,u) € B(0,6), we get

[f(x+u) = f(%) — €1 (ur) — La(u2) |
<NfE+u) = fF,% +ua) = O ()| + | f(F1,%2 +u2) — f(31,%2) — La(u2) |

< ellur]l +elluzll = || (ur,u2) |

if one takes the norm on X given by ||(u1,uz)]| := ||u1 || + ||uz||- |
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Corollary 2.58. A map f: W — Y defined on an open subset W of a product space
X :=X| X --- x Xy is of class C' on W if and only if f has partial derivatives on W
that are jointly continuous.

Now let us give a result dealing with the interchange of limits and differentiation.

Theorem 2.59. Let (f,) be a sequence of Fréchet (resp. Hadamard) differentiable
functions from a bounded, convex, open subset W of a normed space X to a Banach
space Y. Suppose

(a) There exists some X € W such that (f, (X)) converges in Y
(b) The sequence (f,) uniformly converges on W to some map g: W — L(X,Y)

Then (f,) uniformly converges on W to some map f that is Fréchet (resp.
Hadamard) differentiable on W. Moreover, ' = g.

Proof. Let us prove the first assertion. Let r > 0 be such that W is contained in the
ball B(x,r). Given n, p in N, Corollary 2.31 yields, for every x € W,

1o @) = £, 2) = (@) =FuGED| < sup [ 00) =FaO0)|- o=l < |5 = .
2.11)

1o (x) = fa@)|| < |1fpo®) = fu®)||+ 7|17 = £l (2.12)

Since || f}, — /||, — 0 as n, p — oo and since (f,(X) — fu(X)) — 0 as n,p — o, we
see that (f,(x)) is a Cauchy sequence, hence has a limit in the complete space Y; we
denote it by f(x). Passing to the limit on p in (2.12) we see that the limit is uniform
onW.

Now, given x € W, let us prove that f is differentiable at x with derivative g(x).
Given € > 0, we can find k € N such that for p > n > k one has ||fp il <e/3,
hence ||g’ — f1]|.. < /3. Using again Corollary 2.31 with X' := x+u € W, we get

||oo —

[[(Fp e+ 1) = () = (fu(x+u) = fu)) || < (£/3) |Jul|,
and passing to the limit on p, we obtain
1f (et 1) = f(x) = (faloc 1) = ful)) || < (/3) [Jul]- (2.13)

In the Fréchet differentiable case, we can find § > 0 such that B(x,8) C W and for
allu € 5BX ,

|\fk<x+u> <> <>< M < || fele+10) = fiulx) = fL) (W)
+ /i) ()] < (&/3) [lull + (£/3) ||u]| .

Combining this estimate with relation (2.13), in which we take n = k, we get
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VuedBx,  |f(x+u)—fx) -] <elul,

so that f is Fréchet differentiable at x with derivative g(x).
In the Hadamard differentiable case, given € > 0 and a unit vector u, we take
6 € (0,1) such that B(x,28) C W and forz € (0,8), v € B(u,0),

([fie(x+1v) = fi(x) = g(x) (2u) |
<[l 1v) = filx) = fi (o) () | + || fe (o) (1) — g () () | < (e/3)r + (2/3)r.

Gathering this estimate with relation (2.13), in which we take n =k, u = tv, we get
¥(t,v) € (0,8) x B(u,6), [ f(x+1v) — fx) — g(x) (tu) || < e,

so that f is Hadamard differentiable at x and f’(x) = g(x). O

Corollary 2.60. Let X,Y be normed spaces, Y being complete, and let W be an
open subset of X. The space B'(W,Y) (resp. BC'(W,Y)) of bounded, Lipschitzian,
differentiable (resp. of class C') maps from W to Y is complete for the norm ||-|| -
given by
11l o o= sup £ ) + sup | £G2) |-
xeWw xeWw

Here we use the fact that if f is Lipschitzian and differentiable, its derivative is
bounded.

Proof. Let (f,) be a Cauchy sequence of (B'(W,Y), |-[|;..). Then (f;) is a Cauchy
sequence of the space B(W,L(X,Y)) of bounded maps from W into L(X,Y) for
the uniform norm; thus it converges and its limit is continuous if f, € BC'(W,Y).
Similarly, (f,,) converges in B(W,Y ). The theorem ensures that the limit f of (f;,) is
Fréchet differentiable and its derivative is the limit of (f]), hence is bounded. Thus
f belongs to B (W,Y) and (f,) — f for |||, ... If (f,) is contained in BC'(W,Y),
then f’ is continuous, whence f € BC'(W,Y). O

A directional version follows similarly from Theorem 2.59.

Corollary 2.61. Let X,Y be normed spaces, Y being complete, and let W be
an open subset of X. The space BH'(W,Y) of bounded, Lipschitzian, Hadamard
differentiable maps from W to Y is complete for the norm ||-||, ... The same is true

for its subspace BD' (W,Y) formed by bounded, Lipschitzian maps of class D'.

Now let us derive the important Borwein—Preiss smooth variational principle
from the Deville-Godefroy—Zizler theorem (Theorem 1.152). When Y := R, we
simplify the notation B!(X,Y) into B!(X), and we adopt similar simplifications for
the other spaces.

Theorem 2.62 (Borwein—Preiss variational principle). Let X be a Banach space
and let F := B'(X) (resp. BH'(X), BC'(X), BD' (X)) with the norm ||-||, ., defined
above. Suppose there exists some nonnull function b € F with bounded support.
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Then, given a lower semicontinuous function f : X — R that is bounded below, the
set G of g € F such that f + g is well-posed is generic in F.

Moreover, there exists some K > 0 depending only on X such that for every € >0
and every u € X satisfying f(u) < inf f(X) + k&2 one can find some g € F satisfying
lgll; .. <& and some minimizerv of f+ g belonging to B(u,€).

Note that one has f(v) —& < f(v)+g(v) < f(u) +g(u) < f(u)+ €, hence f(v) <
fu)+2e.

Proof. Conditions (b) and (c) of Theorem 1.152 are obviously satisfied, whereas
(a) is part of our assumptions (here we have changed W into F in order to avoid
confusion with what precedes). Moreover, (F, ||-||) is complete by the preceding
corollary. The last assertion follows from the corresponding localization property in
Theorem 1.152 and the relation ||g(¢-)|| <t||g|| fort > 1,g € F. O

Exercises

1. (a) Show that r : X — Y is a remainder if and only if there exists a remainder p
on R such that ||r(x)|| < p(||x||) for all x close to 0.
(b) Prove the other two characterizations of remainders that follow the defini-
tion.

2. Define a notion of directional remainder that could be used for the study of
Hadamard differentiability.

3. Show that when f : W — Y is Fréchet differentiable at X, then it is stable at X in
the sense that there exists ¢ > 0 such that || f(X+x) — f(%)|| < c||x| for ||x|| small
enough.

4. Give a direct proof that Fréchet differentiability implies Hadamard differentia-
bility.

5. Show thatif f : X; x X, — Y is circa-differentiable at X := (¥,X,) with respect
to X; and X», then it is circa-differentiable at x.

6. In Theorem 2.59, when W is not bounded, assuming that (f;,) converges to g
uniformly on bounded subsets of W, get a similar interchange result in which the
convergence of (f;) to f is uniform on bounded subsets of the open convex set W.

7. In Theorem 2.59, assuming that W is a connected open subset of X and that
the convergence of (f},) is locally uniform (in the sense that for every x € W there
exists some ball with center x contained in W on which the convergence of (f)
is uniform), prove that (f,) is locally uniformly convergent and that its limit f is
differentiable with derivative g.

8. Give a direct proof of Proposition 2.51.
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9. With the hypothesis of Proposition 2.51, show that the map f is circa-differentiable
at X. Is it of class C! at X?

10. Express the chain rule for differentiable maps between R”, R”, R? in terms of
a matrix product for the Jacobians of f and g.

11. Using the Hahn—Banach theorem, show that f : W — Y is circa-differentiable
ata € W if and only if there exists amap F : W x W — L(X,Y) continuous at (a,a)
such that f(u) — f(v) = F(u,v)(u—v). Then f'(a) = F(a,a).

12. Show that if X is finite-dimensional, then f : U — Y, with U open in X, is of
class D! if and only if f is of class C!. [Hint: For every element ¢ of a basis of X the
map x — Df(x)(e) is continuous when f is of class D'.]

13. Given normed spaces X,Y and a topology 7 (or a convergence) on the space
of maps from Bx to Y, one can define a notion of 7 -semiderivative at X of a map
f:B(X,r) — Y: it consists in requiring that the family of maps (f; )o<;<, from By to
Y given by f;(v) ==t~ (f(X+v) — f(X)) have a limit as t — 0. If the limit is the
restriction to Bx of a continuous linear map, one speaks of a .7 -derivative. Interpret
Gateaux, Hadamard, and Fréchet derivatives with the help of the topologies of
uniform convergence on the families of finite subsets, compact subsets, and bounded
subsets. Observe that such a process also applies to some other families of sets, such
as the family of weakly compact subsets of By.

14. Show that the norm x — ||x|| := sup,c |x(¢)| on the Banach space X := C(T)
of continuous functions on T := [0,1] is not Fréchet differentiable at any point.
Compare with Exercise 8 of the preceding section.

15. Let X and Y be normed spaces, letx € X, ¢, r >0, W :=B(x,r), f: W — Y be
of class C' and such that || f'(x) — f'(%)|| < c||x—X|| forall x € W.

(a) Show that || f(x) — f(x) — f/(x)(x— )| < (c/2) ||x—%|\2 forallxe W.
(b) Suppose that f” is Lipschitzian with rate ¢ on W. Show that for all w,x € W one

has || f(x) = f(w) = f'(w)(x = w)|| < (¢/2) [k —w].

2.5 Inversion of Differentiable Maps

In the present section, we show that simple methods linked with differentiability
concepts lead to efficient ways of solving nonlinear systems or vectorial equations

f(x) =0. (2.14)

Here X and Y are Banach spaces, W is an open subset of X, and f : W — Y is a map.
We start with a classical constructive algorithm.
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2.5.1 Newton’s Method

Newton’s method is an iterative process that relies on a notion of approximation by
a linear map. We formulate it as follows.

Definition 2.63. The map f : W — Y has a Newton approximation atx € W if there
exist ¥ >0, o >0 and amap A : B(X,r) — L(X,Y) such that B(X,r) C W and

Vr € B(,r), 1£0) — fE® A =D < alx—F].  (2.15)

Amap A:V — L(X,Y) is a slant derivative of f at X if V is a neighborhood of X
contained in W and if for every o > 0 there exists some r > 0 such that B(x,r) C V
and relation (2.15) holds.

Thus f is differentiable at X if and only if f has a slant derivative at X that is
constant on some neighborhood of X. But condition (2.15) is much less demanding,
as the next lemma shows.

Lemma 2.64. The following assertions are equivalent:

(a) f has a Newton approximation A that is bounded near X
(b) f has a slant derivative A at X that is bounded on some neighborhood of X
(c) fis stable at X, i.e., there exist ¢ > 0, r > 0 such that

vx € B(%,r), 1) - f@) Sclle—F.  @16)

Proof. (a)=-(c) If for some o, B > 0 and some r > 0 amap A : B(x,r) = L(X,Y)
is such that (2.15) holds with ||A(x)|| < B for all x € B(X,r), then by the triangle
inequality, relation (2.16) holds with ¢ := o + f3.

(c)=>(b) We use a corollary of the Hahn—Banach theorem asserting the existence
of some map s: X — X* such that s(x)(x) = ||x|| and |s(x)|| = 1 for all x € X.
Suppose (2.16) holds. Then setting A(¥) = 0 and forw € W\ {Z}, x € X,

fw) = fx)

[[w — x|

A(w)(x) = {s(w=%),x) ,
we easily check that ||A(w)|| < ¢ for all w € W and that A(x)(x — %) = f(x) — f(X)
for all x € W, so that (2.15) holds with o = 0 and A is a slant derivative of f at X.
(b)=(a) is obvious, a slant derivative of f at X being a Newton approximation of
fatX. a

In the elementary Newton method that follows, we first assume that (2.14) has a
solution X.

Proposition 2.65. Let X be a solution to (2.14), let o, B,r > 0 satisfy y:=off < 1,
and let A : B(X,r) — L(X,Y) be such that (2.15) holds, A(x) being invertible with
||A(x)~t|| < B for all x € B(X,r). Then the sequence (x,) given by
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X1 i=Xn —A() " (f () (2.17)

is well defined for every initial point xy € B(X,r) and converges linearly to X with
ratey.

The last assertion means that ||x,1 —X|| < ¥||x, — X]|, hence ||x, —X|| < ¢¥" for
some ¢ > 0 (in fact ¢ := ||xo — X||). Thus, if A is a slant derivative of f atX, then (x;)
converges superlinearly to X: for all € > 0 there is some k € N such that ||x,,1; —X|| <
€ ||x, —X|| for all n > k.

Proof. Using the fact that f(x) = 0, so that
X1 =X = Al) ! (F(F) = f () +Ax) (6 — ).
we inductively obtain that

s =] < B L () = ) = At) (0 =9 | < 0B [l — ]

so that x,+| € B(X,r): the whole sequence (x,) is well defined and converges to X.
O

Under reinforced assumptions, one can show the existence of a solution.

Theorem 2.66 (Kantorovich). Let xo € W, o, B >0, r >0 with y:= aff <1,
B(xo,r) C W and let A : B(xy,r) — L(X,Y) be such that for all x € B(xo,r) the map
A(x) : X — Y has a right inverse B(x) : Y — X satisfying |B(x)(-)|| < B ||-|| and

Vw,x € B(xo,r), lf(w)—flx) —Ax)(w—x)|| < a|lw—x|. (2.18)

If |1 f(x0)|| < B~'(1—y)r and if f is continuous, the sequence given by the Newton
iteration
Xnt1 = Xn — B() (f (xn)) (2.19)

is well defined and converges to a solution X of (2.14). Moreover, one has ||x, —X|| <
ry* foralln € N and ||x —xo|| < B(1 =)' f(x0)|| < 7.

Here B(x) is a right inverse of A(x) if A(x) o B(x) = Iy; B(x) is not assumed to be
linear.

Proof. Let us prove by induction that x, € B(xo,7), ||Xu+1 — Xul|| < BY" || f(x0)]|, and
If e |l < 7 || f(x0)||. For n = 0 these relations are obvious. Assuming that they are
valid for n < k, we get

k—1
e = xoll < X s —xall < B (x0)
n=0

S 7 =Bl (-7 <7

n=0

or x; € B(xo,r), and since f(xz_1) +A(xx—1)(xx —xx—1) = 0, from (2.18), (2.19), we
have
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LGl < 11 (o) = f (art) = AC—1) (o = xe—1) 1| < o[ foee — et | < ¥* (L (xo)

and
kg1 = xell < B LGl < BY* (1 (xo) I

Since y < 1, the sequence (x,) is a Cauchy sequence, hence converges to some X € X
satisfying [|¥ — xo|| < B || f(x0)|| (1 —7)~! < r. Moreover, by the continuity of f, we
get f(x) = lim, f(x,) = 0. Finally,

p—1
b =3 < Tim_ [l x| < pEng 1 = xel] < 77" 0

We deduce from Kantorovich’s theorem a result that is the root of important
estimates in nonlinear analysis.

Theorem 2.67 (Lyusternik—Graves theorem). Ler X and Y be Banach spaces,
let W be an open subset of X, and let g : W — Y be circa-differentiable at some
X € W with a surjective derivative Dg(X). Then g is open at X. More precisely, there
exist some p,0,K > 0 such that g has a right inverse h : B(g(X),0) — W satisfying
1) 3| < Kllg(®) — | for all y € B(g(%),0) and

V(w,y) € B(x,p) x B(g(X),0) FTxeW: glx)=y, [x—w|<xK|gw)—y|.
(2.20)

Proof. Let A: W — L(X,Y) be the constant map with value A := Dg(X) (we use
a familiar abuse of notation). The open mapping theorem yields some 3 > 0 and
some right inverse B : Y — X of A such that ||B(-)|| < B]-]|- Let o, > 0 be such
that y:= off < 1, B(X,2r) C W and

Vw,x € B(x,2r), |lg(w)—g(x) —Dg@)(w—x)|| < a|lw—x]. (2.21)

Let 6,7 > 0 be such that 6+ 7 < B~ !(1 — y)r, and let p € (0,r] be such that
g(w) € B(g(x),7) for all w € B(%,p). Given w € B(X,p), y € B(g(%),0), let us set
J(x) :=g(x) —y for x € B(x,p), so that [|f(w)]| < [|g(w) —gX)[ + [lg(x) —y[| <
B~'(1—7y)r, and by (2.21), we have that (2.18) holds in the ball B(xo,r), with
xo := w. Using the estimate ||x—xo|| < B|f(x0)|| (1 —7)"! < r obtained in the
proof of Kantorovich’s theorem for a solution x of the equation f(x) = 0, we get
some x € W such that g(x) =y, ||x—w]|| < x||g(w) — y|| with k := B(1 —7)"!. The
right inverse / is obtained by taking w := X in (2.20). O

Exercises

1. Let X and Y be Banach spaces, letx€ X, b, ¢, r >0, W :=B(x,r), f: W =Y
be of class C! and such that f’ is Lipschitzian with rate ¢ on W and || f'(w)T(y*)|| >
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b|ly*|| for all w € W, y* € Y*. Let b > cr. Using Kantorovich’s theorem, prove
that for all y € B(f(X),(b — cr)r) there exists x € W satisfying f(x) =y and
lx—%|| < b~y — f(x)||. [Hint: Use the Banach-Schauder theorem to find a right
inverse B(w) of A(w) := f'(w) for all w € W satisfying ||B(w)(-)|| <5~ '|-|| and use
Exercise 15 of Sect. 2.4 to check condition (2.18)]

2. Using Exercise 15 of Sect.2.4 to establish a refined version of Kantorovich’s
theorem and prove that the conclusion of the preceding result can be extended to
every y € B(f(%),br).

3. (Convexity of images of small balls [842]). Let X be a Hilbert space, let Y
be a normed space, let a € X, ¢, p, 6 >0, W := B(a,p), and let f: W — Y be
differentiable and such that f” is Lipschitzian with rate c on W and || f'(a)T(y*)|| >
o ||y*|| for all y* € Y*. Prove that for r > 0, r < min(p,oc/2c), the image f(B) of
B := B(a,r) by the nonlinear map f is convex. [Hint: Given xg, x; € B, yo := f(x0),
Y1 i= £, v i= (1/2)(0+ 1), T = (1/2) (30 +x1), show that [[f'(w)T(s*)]] >
b|ly*|| forallw € W, y* € Y* for b := 0 — cr and apply the preceding exercise.]

4. Extend the (surprising!) result of the preceding exercise to the case that X is a
Banach space with a uniformly convex norm.

2.5.2 The Inverse Mapping Theorem

The inverse mapping theorem is a milestone of differential calculus. It shows the
interest and the power of derivatives. It has numerous applications in differential
geometry, differential topology, and the study of dynamical systems.

When f: T — R is a continuous function on some open interval 7 of R, one
can use the order of R and the intermediate value theorem to get results about
invertibility of f. If, moreover, f is differentiable at some r € T and if f'(r) is
nonnull, one can conclude that f(7') contains some neighborhood of f(r). When f
is a map of several variables, one would like to know whether such a conclusion
is valid, and even more, whether f induces a bijection from some neighborhood of
a given point X onto some neighborhood of f(X). Of course, one cannot expect a
global result without further assumptions, since the derivative is a local notion.

Following René Descartes’s advice, we will reach our main results, concerning
the possibility of inverting nonlinear maps, through several small steps; some of
them have an independent interest.

First, given a bijection f between two metric spaces X,Y, we would like to know
whether a map close enough to f is still a bijection. When X and Y are finite-
dimensional normed spaces and f is a linear isomorphism, we know that every
linear map g that is close enough to f for some norm on the space L(X,Y) of linear
continuous maps from X into Y is still an isomorphism: taking bases in X and Y,
we see that if g is close enough to f, its determinant will remain different from O.
A similar result holds in infinite-dimensional spaces: the set of linear continuous



2.5 Inversion of Differentiable Maps 149

maps that are isomorphisms onto their images is open in the space L(X,Y). When
X and Y are complete, a more precise result can be given.

Proposition 2.68. Let f be a linear isomorphism between two Banach spaces X
and Y. Then every g € L(X,Y) such that || f — g|| < ||f~"|| ! is an isomorphism.

Proof. Let us first consider the case X =Y, f = Ix. Let u:=Ix — g, so that u €
L(X,X) satisfies ||u|| < 1. Since the map (v,w) — wov is continuous, since

Ix —u"' = (Ix —u)o (i uk> = (i uk> o(Ix —u),

k=0 k=0

and since the series Y, u* is absolutely convergent (since HukH < ||u||k), we get
that its sum is a right and left inverse of Ix — u. Thus Ix — u is invertible.

The general case can be deduced from this special case. Given g € L(X,Y) such
that || f —g|| <r:=||f~"|| 7", settingu:= Iy — f~' o g, we observe that ||u|| <||f~'o
(F= <IIF7 Y- IIf—gll < 1. Therefore, by what precedes, f~'og = Iy —u is
invertible. It follows that g is invertible, with inverse (Iy —u) ' o 1. O

Now let us turn to a nonlinear situation. Let us first observe thatif f: U — Visa
bijection between two open subsets of normed spaces X and Y respectively, it may
occur that f is differentiable at some a € U whereas its inverse g is not differentiable
at b = g(a): take U =V =R, f given by f(x) = x>, whose inverse y — y'/3 is not
differentiable at 0. However, if f is differentiable at some a € X and if its inverse
g is differentiable at b := g(a), then the derivative of g at b is the inverse f'(a)~!
of the derivative f(a) of f at a. This fact simply follows from the chain rule: from
gof=1Iy and fog=Iy one deduces that g’(h) o f’(a) = Ix and f'(a)og'(b) = Iy.

Our first step is not as obvious as the preceding observation, since one of its
assumptions is now a conclusion.

Lemma 2.69. Let U and V be two open subsets of normed spaces X and Y
respectively. Assume that f : U — V is a homeomorphism that is differentiable at
a € U and such that f'(a) is an isomorphism. Then the inverse g of f is differentiable

atb= f(a) and g'(b) = f'(a)~".

Proof. Using translations if necessary, we may suppose a = 0, f(a) = 0 without loss
of generality. Changing f into A~ ! o f, where  := f’(a), we may also suppose ¥ = X
and f’(a) = Ix. Then setting s(y) := g(y) —y, we have to show that s(y)/[|y]] = 0
asy— 0,y #0. Letus set r(x) := f(x) —x. Given € € (0,1), we can find p > 0 such
that ||#(x)|| < (€/2) ||x|| for x € pBx. Since g is continuous, we can find ¢ > 0 such
that ||g(y)|| < p fory € 6By. Then for y € 6By and x := g(y), we have y = f(x) =
x+r(x), and hence

VI = Al = MGl = (1/2) 1x]]
sl = llg@) =yl = (o)l < (e/2) [Ix]| < el - O
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In order to get a stronger result in which the invertibility of f is part of the con-
clusion instead of being an assumption, we will use the reinforced differentiability
property of Definition 2.54. Recall that a map f : W — Y from an open subset W
of a normed space X into another normed space Y is circa-differentiable (or strictly
differentiable) at @ € W if there exists a continuous linear map ¢ : X — Y such that
the map r = f — £ is Lipschitzian with arbitrarily small Lipschitz rate on sufficiently
small neighborhoods of a: for every € > 0 there exists p > 0 such that B(a,p) C W
and

Yw,w' € B(a,p), |[f(w)—fW)—tw—w)|| <ellw—w.

The criterion for circa-differentiability given in Proposition 2.56 uses continuous
differentiability or slightly less. Thus, the reader who is not interested in refinements
may suppose throughout that f is of class C!.

Our next step is a perturbation result. We formulate it in a general framework.

Lemma 2.70. Let (U,d) be a metric space, letY be a normed space, let j,h:U —Y
be such that

(a) jis injective and its inverse j~' : j(U) — U is Lipschitzian with rate y;
(b) his Lipschitzian with rate A.

Then if YA < 1, the map f := j+ h is still injective and its inverse f~': f(U) — U
is Lipschitzian with rate y(1 —yA )™\,

Note that the Lipschitz rate of the inverse of the perturbed map f is close to
the Lipschitz rate of j~! when A is small. It may be convenient to reformulate this
lemma by saying that a map e : X — Y between two metric spaces is expansive with
rate ¢ > 0 if for all x,x’ € X one has

d(e(x),e(x')) > cd(x,x').
This property amounts to

(e (v),e () < ld(yy)
for every y,y’ € e(X), i.e., e is injective and its inverse is Lipschitzian on the image
e(X) of e. Thus the lemma can be rephrased as follows:

Lemma. Let X be a metric space and let Y be a normed space. Let e : X — Y be
expansive with rate ¢ > 0 and let h : X — Y be Lipschitzian with rate { < c. Then
g 1= e+ his expansive with rate ¢ — (.

Proof. The lemma results from the following relations, valid for every x,x’ € X:

Hg(x) —g(x’)” > He(x) - e(x')H - ||h(x) —h(x’)H > cd(x,x') — 0d(x,x).

Note that for ¢ = y~!, £/ =2 one has (¢ —£)~!' = y(1 —yA)~L. O
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Since we have defined differentiability only on open subsets, it will be important
to ensure that f(U) is open in order to apply Lemma 2.69. We reach this conclusion
in two steps. The first one relies on the Banach—Picard contraction theorem.

Lemma 2.71. Let W be an open subset of a Banach space Y and letk: W — Y be
a Lipschitzian map with rate ¢ < 1. Then the image of W by f := Iy + k is open.

Proof. We will prove that for every a € W and for every closed ball B[a, r] contained
in W, the closed ball B[f(a),(1 — c)r] is contained in the set (W), and in fact in
the set f(Bla,r]). Without loss of generality, we may suppose a = 0, k(a) = 0, using
translations if necessary. Given y € (1 — ¢)rBy we want to find x € rBy such that
y = f(x). This equation can be written y — k(x) = x. We note that x — y — k(x) is
Lipschitzian with rate ¢ < 1 and that it maps rBy into itself, since

Iy =k < Iyl + [Ik()l| < (1 =c)rtcr=r

Since rBy is a complete metric space, the contraction theorem yields some fixed
point x of this map. Thus y = f(x) € f(W). O

Lemma 2.72. Let (U,d) be a metric space, letY be a Banach space, let y > 0,1 >0

with YA < 1, and let j,h:U — Y be such that W := j(U) is open and
(a) jis injective and its inverse j~!

(b) his Lipschitzian with rate A.

: W = U is Lipschitzian with rate y;

Then the map f := j+ h is injective, its inverse is Lipschitzian, and f(U) is open.

Proof. Let k:=ho j~!, so that fo j~! = Iy +k and k is Lipschitzian with rate
yA < 1. Then Lemma 2.7 Ishows that f(U) = f(j~'(W)) = (I+k)(W) is open. O

We are ready to state the inverse mapping theorem.

Theorem 2.73 (Inverse mapping theorem). Ler X and Y be Banach spaces, let W
be an open subset of X, and let f : W — Y be circa-differentiable at a € W and such
that f'(a) is an isomorphism from X onto Y. Then there exist neighborhoods U of
aandV of b:= f(a) such that U C W and such that f induces a homeomorphism
from U onto V whose inverse is differentiable at b.

Proof. In the preceding lemma, let us take j := f'(a), h = f — j. Since j is an
isomorphism, its inverse is Lipschitzian with rate ||j~!||. Let U be a neighborhood
of a such that 4 is Lipschitzian with rate A < 1/||j!||. Then by the preceding
lemma, V := f(U) is open and f | U is a homeomorphism from U onto V, and
by Lemma 2.69, its inverse is differentiable at b. O

Exercise. Show that the inverse of f is in fact circa-differentiable at b.

Exercise (Square root of an operator). Let £ be a Banach space and let X :=
L(E,E). Considering the map f : X — X given by f(u) := u? := uou, show that
there exist a neighborhood V' of Ir in X and a differentiable map g : V. — X such
that g(v)? := g(v)og(v) =vforallve V.
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The following classical terminology is helpful.

Definition 2.74. A C*-diffeomorphism between two open subsets of normed spaces
is a homeomorphism that is of class Ck, as is its inverse k>1).

The following example plays an important role in the sequel, so that we make it
a lemma.

Lemma 2.75. Let X and Y be Banach spaces. Then the set 1so(X,Y) of isomor-
phisms from X onto Y is open in L(X,Y) and the map i : Iso(X,Y) — Iso(Y,X)
given by i(u) = u~" is a C*-diffeomorphism, i.e., a C*-diffeomorphism for all k > 1.

Proof. The first assertion has been proved in Proposition 2.68. Let us prove the
second assertion by first considering the case X =Y and by showing that i is
differentiable at the identity map Ix, with derivative Di(Ix) given by Di(Ix)(v) = —v.
Taking p € (0, 1), this follows from the expansion

e L(X,X), |v|<p. (Ix+v) ' =Ix —v+s(v),

with s(v) := v? o ¥_o(—1)"*: s defines a remainder, since ||(—1)"*|| < p* and
Is(v)|| < (1—p)~"||v||*. Thus i is differentiable at Ix.

Now in the general case, for u € Iso(X,Y), w € L(X,Y) satisfying ||w| <
1/]ju=!]|,v:=u""ow, one has u+w=uo (Ix +v) € Iso(X,Y),

i(u+w)=[uo (Ix +u! OW)T1 =(Ix+utow) tou!

=(Ix—u 'ow+s(v))ou !,
and one sees that i is differentiable at u, with

Di(u)(w) = —u 'owou 1. (2.22)

Thus the derivative i : Iso(X,Y) — L(L(X,Y),L(Y,X)) is obtained by composing
i with the map k : L(Y,X) — L(L(X,Y),L(Y,X)) given by k(z)(w) := —zowoz
forz € L(Y,X), w € L(X,Y), which is continuous and quadratic, hence is of class
C'. It follows that i’ is continuous and i is of class C'. Then i’ is of class C'. By
induction, we obtain that i is of class C* for all k > 1. Since i is a bijection with
inverse i ! : Iso(Y,X) — Iso(X,Y) given by i~ '(z) = z~!, we get that i is a C*-
diffeomorphism. a

Note that formula (2.22) generalizes the usual case i(t) =¢~' on R\ {0} for
which i’ (1) = —u~2 and Di(u)(w) = —u">w.

Corollary 2.76. Let X andY be Banach spaces, let W be an open subset of X, and
let f :W — Y be of class C* (k > 1) and such that f'(a) is an isomorphism from X
onto 'Y for some a € W. Then there exist neighborhoods U of a and V of b := f(a)
such that U C W and such that f | U is a C*-diffeomorphism between U and V.
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Proof. Let us first consider the case k = 1. The inverse mapping theorem ensures
that f induces a homeomorphism from a neighborhood U of a onto a neighborhood
V of b. Since f” is continuous at a and since the set Iso(X,Y) of isomorphisms from
X onto Y is open in L(X,Y), taking a smaller U if necessary, we may assume that
f(x) is an isomorphism for all x € U. Then Lemma 2.69 guarantees that g := f~!
is differentiable at f(x). Moreover, one has

g0 =g "

Since the map i : u +— u~! is of class C! on Iso(X,Y), g’ = io f' o g is continuous.
Thus g is of class C'.

Now suppose by induction that g is of class C* if f is of class C¥, and let us
prove that when f is of class C**!, then g is of class C**!. That follows from the
expression g’ = io f’ o g, which shows that g’ is of class C¥ as a composite of maps
of class C. a

Let us give a global version of the inverse mapping theorem.

Corollary 2.77. Let X and Y be Banach spaces, let W be an open subset of X,
and let f :W — Y be an injection of class C* such that for every x € W, the linear
map f'(x) is an isomorphism from X onto Y. Then f(W) is open and f is a C*-
diffeomorphism between W and f(W).

Proof. The inverse mapping theorem ensures that f(W) is open in Y. Thus f is a
continuous bijection from W onto f(W) and its inverse is locally of class C¥, hence
is of class C. a

Exercise. Let f: T — R be a continuous function on some open interval 7 of R.
Show that if f is differentiable at some r € T with f’(r) nonnull, then f(7') contains
some neighborhood of f(r). Show by an example that it may happen that there is no
neighborhood of r on which f is injective.

Example-Exercise (Polar coordinates). Let W := (0, +o0) x (—7,7) C R? and
let f : W — R? be given by f(r,0) = (rcos6,rsin ). Then f is a bijection from W
onto R?\ D, with D := (—oo,0] x {0} and the Jacobian matrix of f at (r,0) is

cos@ —rsin 6

sin@ rcos6 )
Its determinant (called the Jacobian of f) is r(cos?@ 4+ sin>6@) = r > 0; hence
f is a diffeomorphism of class C* from W onto f(W). Using the relation

tan(6/2) = 2sin(0/2)cos(6/2)/2cos*(0/2) = sinO/(1 + cosB), show that its
inverse is given by

(x,y) — x2+y2,2Arctan+ :
x4 /x4 y?



154 2 Elements of Differential Calculus

Example-Exercise (Spherical coordinates). LetW := (0, +oc0) x (=, 7) x (F*, %)
and let f: W — R? be given by f(r,0,®) = (rcos0sin,rsinsin @, rcos o).
Show that f is a diffeomorphism from W onto its image. The angles 0, w are known
as Euler angles. On the globe, they can serve to measure latitude and longitude.

Example-Exercise. Is f : R? — R? given by f(x,y) := (x* —y?,2xy) a diffeomor-

phism? Give an interpretation by considering z ~ z2, with z := x + iy, identifying C
with R,

2.5.3 The Implicit Function Theorem

Functions are sometimes defined in an implicit, indirect way. For example, in
economics, the famous Phillips curve is defined through the equation

1.39u(w+0.9) = 9.64,

where u is the rate of unemployment and w is the annual rate of variation of nominal
wages; in such a case one can express « in terms of w and vice versa. However, given
Banach spaces X,Y,Z, an open subset W of X x Y, and amap f: W — Z, it is often
impossible to determine an explicit map % : Xo — Y from an open subset Xy of X
such that (x,h(x)) € W and f(x,h(x)) = 0 for all x € Xo. When the existence of
such a map is known (but not necessarily in an explicit form), one says that it is an
implicit function determined by f. The following result guarantees the existence and
regularity of such a map.

Theorem 2.78. Let X,Y,Z be Banach spaces, let W be an open subset of X X Y,
and let f :W — Z be a map of class C" at (a,b) € W such that f(a,b) =0 and the
second partial derivative Dy f(a,b) is an isomorphism from Y onto Z. Then there
exist open neighborhoods U of (a,b) and V of a in W and X respectively and a map
h:V =Y of class C" at a such that h(a) = b and
((x,y) €U, flx,y) =0) <= (x €V, y=h(x)). (2.23)
If f is of class CK with k > 1 on W, then h is of class C* on V. Moreover,
Dh(a) = =Dy f(a,b)”" o Dx f(a,b). (2.24)

Proof. Let F : W — X X Z be the map given by F(x,y) := (x, f(x,y)). Then F is of
class C! at (a,b), as are its components, and

DF (a,b)(x,y) = (x,Dx f(a,b)x+ Dy f(a,b)y).

It is easy to check that DF (a,b) is invertible and that its inverse is given by
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(DF(aJ’))il (X,Z) = ('xv_ (Dyf(d,b))71 ODxf(Cl,b)X+ (DYf(avb))ilz)'

Therefore, the inverse mapping theorem yields open neighborhoods U of (a,b) in W
and U’ of (a,0) in X X Z such that F induces a homeomorphism from U onto U’ of
class C' at (a,b). Its inverse G is of class C! at (,0), satisfies G(a,0) = (a,b), and
has the form (x,z) — (x,g(x,z)). LetV:={x€ X : (x,0) €U’} andleth: V — Y be
given by h(x) = g(x,0). Then the equivalence

((xvy) ey, (x,z) = (xvf(xvy))) ~ ((xaz) € Ulv (xvy) = (xvg(xaz)))

entails, by definition of V and h,

((X,y) el, f(-xvy) :0) A ()C eV,y= h('x))

When f is of class C*on W, with k > 1, F is of class C¥; hence G and 4 are of class
C* on U’ and V respectively. Moreover, the computation of the inverse DF (a,b) ™!
we have done shows that

Dh(a) = Dxg(a,0) = —Dy f(a,b) ' oDy f(a,b).

O

Example. Let X be a Hilbert space, and for Y := R, let f : X x Y — R be given by
f(x,y) = ||x||* +y* — 1. Then f is of class C* and for (a,b) := (0, 1) one has

Df(a,b)(u,v) =2(a|u)+2bv="2v,

whence Dy f(a,b) = 2Iy is invertible and Dy f(a,b) "' = (1/2)I. Here we can take
U :=B(a,1) x (0,+e0), V := B(a, 1), and the implicit function is given by i(x) =
(1—|x]*)"/2. As mentioned above, it is not always the case that U and & can be
described explicitly as in this classical parameterization of the upper hemisphere.

When Z is finite-dimensional, the regularity assumption on f can be relaxed in
two ways.

Theorem 2.79. Let X,Y,Z be Banach spaces, Y and Z being finite-dimensional, let
W be an open subset of X XY, and let f : W — Z be Fréchet differentiable at (a,b) €
W such that f(a,b) = 0 and the partial derivative Dy f(a,b) is an isomorphism from
Y onto Z. Then there exist open neighborhoods U of (a,b) and 'V of ain W and X
respectively and a map h: V — Y Fréchet differentiable at a such that h(a) = b and

Vxev, f(x,h(x)) =0.
Differentiating this relation, we recover the value of Dh(a):

Dh(a) = —Dy f(a,b) "' o Dx f(a,b).
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The proof below is slightly simpler when A := Dy f(a,b) = 0; one can reduce it to
that case by a linear change of variables.

Proof. Using translations and composing f with Dy f(a,b)~!, we may suppose
(a,b) =(0,0),Z=Y,and Dy f(a,b) = Iy. Let r : W — Y be a remainder such that

fx,y) = Ax+y+r(x,y).

Fore € (0,1/2]let 6 := (&) > 0 be such that 6Bx xy C W, ||r(x,y)| < e(||x]|+y]])
for all (x,y) € 8Bxxy. Let B :=§/2, o := (2||A|| + 1) B, and for x € aBy let
ky : BBy — Y be given by

ke(y) := —Ax—r(x,y).

Then k, maps By into itself, since for y € BBy we have |k:(y)| < ||A] o +
(1/2)(cx+ B) < B. The Brouwer fixed-point theorem ensures that k, has a fixed
point y, € BBy: —Ax — r(x,yx) = yx. Then setting h(x) := yy, we have f(x,h(x)) =
Ax+ h(x) + r(x,h(x)) = 0. It remains to show that 4 is differentiable at 0. Since

IR = [Mex (RO < (I [lx[l + & [}x]] + € [[A(O)]]
so that [|A(x)[| < (1—&)~'(|A[|+ &) |lx]. we get
172(x) +Axl| = [|r(e, A < e|xl] + € |[a(x) || < e(1— &) (Al + 1) [lx]].

This shows that £ is differentiable at 0 with derivative —A. a
A similar (and simpler) proof yields the first assertion of the next statement.

Theorem 2.80[785]. Let X and Y be normed spaces, Y being finite-dimensional,
andlet f : X — Y be continuous on a neighborhood of a € X and differentiable at a,
with f'(a)(X) =Y. Then there exist a neighborhoodV of b := f(a) inY and a right
inverse g : V — X that is differentiable at a and such that g(b) = a.

If C is a convex subset of X, if a € C, and if f'(a)(cl(R4+(C —a))) =Y, one can
even get that g(V) C C if one does not require that the directional derivative of g at
b be linear.

The second weakening of the assumptions concerns the kind of differentiability.

Theorem 2.81. Let X,Y,Z be Banach spaces, Y and Z being finite-dimensional, let
W be an open subset of X x Y, and let f : W — Z be a map of class D" at (a,b) € W
such that f(a,b) = 0 and the partial derivative Dy f(a,b) is an isomorphism from
Y onto Z. Then there exist open neighborhoods U of (a,b) and 'V of ain W and X
respectively and a map h: V — Y of class D' such that h(a) = b and

((-xvy) ev, f(-xvy) :0) Aand ()CE V.y= h(x))
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Proof. We may suppose W is a ball B((a,b),po), Y = Z, Dy f(a,b) = Iy. With the
notation of the preceding proof, using the compactness of the unit ball of Y, we may
suppose the remainder r satisfies, for p € (0,po) and every x € pBy, v,y € pBy,

1
o) =) = | | @ 5= 0-409) = )=t < o) =]

where ¢(p) — 0 as p — 0. Taking po small enough, we see that the map k,
is a contraction with rate ¢(po) < 1/2. Picking o € (0,pp) so that for x € oBx,
lkx(0)|| = ||—f(x,0)|| < p/2, the Banach-Picard contraction theorem ensures that
ky has a unique fixed point y, in the ball pBy. Then setting A(x) := y,, we have
f(x,h(x)) =0, and y, is the unique solution of the equation f(x,y) = 0 in the
ball pBy. Moreover, h is continuous as a uniform limit of continuous maps given
by iterations. Restricting f to X; x Y, where X is an arbitrary finite-dimensional
subspace of X, we get that & is Giteaux differentiable. Since Iso(Y) is an open
subset of L(Y,Y) and since (x,y) — Dy f(x,y) is continuous for the norm of L(Y,Y)
by the above argument, we obtain from the relation

Dh(x)v = —Dy f(x,h(x)) " (Dx f (x, h(x))v)

that (x,v) — Dh(x)v is continuous. O

Exercises

1. Show that the inverse mapping theorem can be deduced from the implicit
mapping theorem by considering the map (x,y) — y — f(x).

2. Let f: R* — R3 be given by
fwxy,z) =w+x+y+zw+x2+y +z2-2,w + 2 +y +2).

Show that there exist a neighborhood V of @ := 0 in R and a map 4 : V — R> of
class C* such that 2(0) = (0,—1, 1) and f(h(z),z) = 0 for every z € V. Compute the
derivative of 4 at 0.

3. Let X be the space of square n x n matrices and let f : X x R — R be given by
f(A,r) =det(A —rl). Let r € R be such that f(A,r) =0 and Dy f(A,r) # 0. Show
that there exist an open neighborhood U of A in X and a function A : U — R of class
C* such that for each B in U, A(B) is a simple eigenvalue of B.

4. Given Banach spaces W, X, Z, Y :=Z" maps f : W xX - R, g: W xX — Zof
class C, consider the parameterized mathematical programming problem

(Z,,) minimize f(w,x) subject to g(w,x) =0
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and let p(w) be its value. Suppose that for some w € W and a solution ¥ € X of
(P) the derivative B := Dxg(w,X) is surjective and its kernel N has a topological
supplement M. Let ¢ be the Lagrangian of (P5):

Lw,x,y) = f(w,x) + (v, 8(w,x)),

and let y be a multiplier at X, i.e., an element of ¥ such that Dx/(w,x,y) = 0.
Suppose D%/(w,X,y) | N induces an isomorphism from N onto N* ~ M~ . Let
A= D3((W,%,5).

(a) Show that for every (x*,z) € X* x Z the system

Au+ BTy = x*,

Bu=z,

has a unique solution (#,v) € X x Y continuously depending on (x*,z).
(b) Show that the Karush—Kuhn—-Tucker system
Dx f(w,x) +yoDxg(w,x) =

)

g(w,x) =

determines (x(w),y(w)) as an implicit function of w in a neighborhood of w
with x(W) =X, y(w) = ¥, the multiplier at X.

(c) Suppose x(w) is a solution to (2,) for w close to w. Show that p is of class
C! near . Using the relations p(w) = £(w,x(w),y(w)), Dx£(w,x(w),y(w)) =0,
Dyl (w,x(w),y(w)) =0, show that Dp(w) = Dwl(w,x(w),y(w)).

(d) Deduce from what precedes that p is of class C> around #w and give the

expression of D?p(w) := (p'(-))'(W).

2.5.4 The Legendre Transform

As an application of inversion results, let us give an account (and even a refinement)
of the classical notion of Legendre function of class CX. We will see that the
Legendre transform enables one to pass from the Euler-Lagrange equations of the
calculus of variations to the Hamilton equations, which are explicit (rather than
implicit) differential equations of first order (instead of second order). Recall that a
map g : U — V between two metric spaces is stable or is Stepanovian if for every
u € U there exist some r > 0, ¢ € Ry such that for every u € B(&, r) one has

d(g(u),8(@)) < cd(u,u).

Such an assumption is clearly a weakening of the Lipschitz condition.
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Definition 2.82. A function f : U — R on an open subset U of a normed space X
is a (classical) Legendre function if it is differentiable, and its derivative f' : U —
Y := X" is a Stepanovian bijection onto an open subset V of Y whose inverse / is
Stepanovian.

Then one defines the Legendre transform of f as the function f~ : V — R given by

FH0) = (h(y),y) — f(h(y)), yE€EV.

Since 4 is just a Stepanovian function, it is surprising that £ is in fact of class C'.

Lemma 2.83. If f is a Legendre function on U, then its Legendre transform f* is
of class C' on V := f'(U) and of class C* (k > 1) if f is of class C*. Moreover, f*
is a Legendre function, (fL)L = f and for all (u,v) € U XV one has

v=Df(u) = u=Df®W).

Proof. Givenv:=Df(u) €V, letycV —v,letx:=h(v+y)—h(v) €U —u, and let
r(x) = f(u+x) — f(u) — Df (u)x. Then since h(v) = u, h(v+y) = u+x, one has

FEO+2) = 10) = (u,y) = (et x, v+ y) = flutx) = () + () = (u,y)
= (v +y) = Df () (x) = r(x) = (x,3) — r(x).

Since there exists ¢ € R such that ||x|| < c||y|| for |ly|| small enough, the last
right-hand side is a remainder as a function of y. Thus fL is differentiable at v and
DfL(v) = u = h(v). Therefore (f~)' = h is a bijection with inverse f’ and f* is a
Legendre function. Now

(F1)" () = (DFHw),v) = F1(0) = ,v) = (,v) = F(w)) = ().

When f is of class C¥, (L)' = h is of class C*~!, as an induction shows, thanks
to the Stepanov property of f” and h. O

Exercise. Let X be a normed space, let A : X — X* be a linear isomorphism, let
b € X*, and let f be given by f(x) := (1/2){Ax,x) + (b,x) for x € X. Show that f is
a Legendre function and compute L.

2.5.5 Geometric Applications

When looking at familiar objects such as forks, knives, funnels, roofs, spires, one
sees that some points are smooth, while some other points of the objects present
ridges or peaks or cracks. Mathematicians have found concepts that enable them to
deal with such cases.
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The notions of (regular) curve, surface, hypersurface, and so on can be embodied
in a general framework in which some differential calculus can be done. The
underlying idea is the possibility of straightening a piece of the set; for this purpose,
some forms of the inverse mapping theorem will be appropriate.

We first define a notion of smoothness for a subset S of a normed space X around
some point a.

Definition 2.84. A subset S of a normed space X is said to be C¥-smooth around a
point a € § if there exist normed spaces Y, Z, an open neighborhood U of ¢ in X, an
open neighborhood V of 0 in ¥ x Z, and a CX-diffeomorphism ¢ : U — V such that
¢(a)=0and

o(UNS)=(Y x{0})NV. (2.25)

A subset S of a normed space X is said to be a submanifold of class C* if it is
C*-smooth around each of its points.

Thus, ¢ straightens U NS onto the piece (¥ x {0})NV of the linear space Y x {0},
which can be identified with a neighborhood of 0 in Y. The map ¢ is called a chart,
and a collection {@;} of charts whose domains form a covering of S is called an
atlas. When Y is of dimension d, one says that S is of dimension d around a. When
Z is of dimension c, one says that S is of codimension ¢ around a.

The following example can be seen as a general model.

Example. LetX :=Y x Z, where Y, Z are normed spaces, let W be an open subset of
Y,andlet f: W — Z be a map of class C*. Then its graph § := { (w, f(w)) : w € W} is
a C*-submanifold of X: taking U :=V := W x Z, and setting @ (w,z) := (w,z— f(w)),
we define a C*-diffeomorphism from U onto V with inverse given by ¢! (w,z) =
(w,z+ f(w)) for which (2.25) is satisfied. O

When in the preceding example we take Z := R and the epigraph E := {(w,y) €
W xR:y> f(w)} of f, we get amodel for the notion of submanifold with boundary.
We just give a formal definition in which a subset Z of a normed space Z is said to
be a half-space of Z if there exists some i € Z*\ {0} such that Z, := A~ (R,).

Definition 2.85. A subset S of a normed space X is said to be a CX-submanifold
with boundary if for every point a of S, either S is CX-smooth around a or there exist
normed spaces Y,Z, a half-space Z, of Z, an open neighborhood U of a in X, an
open neighborhood V of 0 in ¥ x Z, and a C*-diffeomorphism ¢ : U — V such that
¢(a) =0and

o(UNS)=(Y xZy)NV.

Such a notion is useful for giving a precise meaning to the expression “S is a
regular open subset of R¢” (an improper expression, since usually one considers the
closure of such a set).

There are two usual ways of obtaining submanifolds: through equations and
through parameterizations. For instance, the graph S of the preceding example can
be defined either as the image under (&, f) : w — (w, f(w)) of the parameter space
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W or as the set of points (y,z) € Y x Z satisfying y € W and the equation z— f(y) =0.
As a more concrete example, we observe that for given a,b € P, the ellipse

2 2
— 2. X Y
E = {(x,y) e R E-ﬁ-ﬁ = 1}
can be seen as the image of the parameterization f : R — R? given by f(¢) :=
(acost,bsint).

Exercise. Give parameterizations for the ellipsoid { (x,,z) € R3: 272 + %ir + é =1}
and do the same for the other surfaces of R? defined by quadratic forms.

Even if S is not smooth around a € S, one can get an idea of its shape around a
using an approximation. The concept of tangent cone offers such an approximation;
it can be seen as a geometric counterpart to the directional derivative.

Definition 2.86. The fangent cone (or contingent cone) to a subset S of a normed
space X at some point a in the closure of S is the set 7'(S,a) of vectors v € X such
that there exist sequences (v,) — v, (f,) — 0. for which a +#,v,, € S for all n € N.

Equivalently, one has v € T(S,a) if and only if there exist sequences (a,) in S,
(t,) — 04 such that (v,) := (£, '(a, —a)) — v: v is the limit of a sequence of secants
to S issued from a.

Some rules for dealing with tangent cones are given in the next lemma, whose
elementary proof is left as an exercise.

Lemma 2.87. Let X be a normed space, let S,S' be subsets of X such that S C S'.
Then for every a € S one has T(S,a) C T(S',a).

IfU is an open subset of X, then for every a € SNU one has T (S,a) =T(SNU,a).

If X' is another normed space, if g : U — X' is Hadamard differentiable at a, and
if ' C X' contains g(SNU), then one has Dg(a)(T(S,a)) C T(S,g(a)).

If @ : U — V is a Ck-diffeomorphism between two open subsets of normed spaces
X, X" and if S is a subset of X containing a, then for S’ := @(SNU) and @' := ¢(a),
one has T(S',a") = Do(a)(T(S,a)).

Exercise. Deduce from the second assertion of the lemma that for g : U — X'
Hadamard differentiable at a, b := g(a), S := g~ (b) one has T(S,a) C kerDg(a).
Moreover, if for some ¢ > 0, p > 0 one has d(x,g ' (b)) < cd(g(x),b) for all
x € B(a,p), then one has T'(S,a) = ker Dg(a).

Exercise. Let S:= {(x,y) € R?: x> = y?}. Check that T'(S, (0,0)) = R, x {0}.
When § is smooth around a € § in the sense of Definition 2.84, one can give an
alternative characterization of 7(S,a) in terms of velocities.

Proposition 2.88. If S is C'-smooth around a € S, then the tangent cone T(S,a)
to S at a coincides with the set T'(S,a) of v € X such that there exist T > 0 and
c:10,7] — X right differentiable at 0 with ¢/, (0) = v and satisfying ¢(0) =a, c(t) €S
forall t € [0,7]. Moreover, if ¢ : U — V is a C'-diffeomorphism such that ¢(a) =0
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and @(SNU) = (Y x {0}) NV, then one has T(S,a) = (Dg(a))~" (¥ x {0}), and
T(S,a) is a closed linear subspace of X.

Proof. The result follows from Lemma 2.87 and the observation that if S is an open
subset of some closed linear subspace L of X then T'(S,a) = L = T!(S,a). O

Now let us turn to sets defined by equations. We need the following result.

Theorem 2.89 (Submersion theorem). Let X and Z be Banach spaces, let W be
an open subset of X, and let g : W — Z be a map of class C* with k > 1 such that
for some a € W the map Dg(a) is surjective and its kernel N has a topological
supplement M in X. Then there exist an open neighborhood U of a in W and a
diffeomorphism @ of class C* from U onto a neighborhoodV of (0,g(a)) in N x Z
such that (a) = (0,g(a)),

glU=poog,

where p is the canonical projection from N x Z onto Z. In particular, g is open
around a in the sense that for every open subset U' of U, the image g(U') is open.

This result shows that the nonlinear map g has been straightened into a simple
continuous linear map, a projection, using the diffeomorphism ¢.

Proof. Let F : W — N x Z be given by F(x) = (py(x) — pn(a),g(x)), where
pN : X — N is the projection on N associated with the isomorphism between X and
M x N. Then F is of class C* and DF (a)(x) = (py(x),Dg(a)(x)). Clearly DF (a) is
injective: when py(x) = 0, Dg(a)(x) = 0, one has x € M NN, hence x = 0. Let
us show that DF(a) is surjective: given (y,z) € N X Z, there exists v € X such
that Dg(a)(v) = z, and since y — py(v) € N, for x := v+ y — py(v), we have that
Dg(a)(x) = Dg(a)(v) =zand py(x) = pn(y) =y. Thus, by the Banach isomorphism
theorem, we have that DF (a) is an isomorphism of X onto N x Z. The inverse
mapping theorem ensures that the restriction ¢ of F to some open neighborhood
U of a is a C*-diffeomorphism onto some neighborhood V of (0,g(a)). O

Note that for Z := R, the condition on g reduces to the following: g is of class
C* and g'(a) # 0. Note also that when N := {0}, we recover the inverse function
theorem.

The application we have in view follows readily.

Corollary 2.90. Let X and Z be Banach spaces, let W be an open subset of X, and
let g : W — Z be a map of class C* with k > 1. Let
S:={xeW:g(x)=0}.

Suppose that for some a € S the map g'(a) := Dg(a) is surjective and its kernel
N has a topological supplement in X. Then S is C*-smooth around a. Moreover,
T(S,a) =kerg'(a).

Proof. Using the notation of the submersion theorem, setting ¥ := N, we see that
Definition 2.84 is satisfied, noting that for x € U we have x € SNU iff p(p(x)) =
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g(x) =0, iff p(x) € (Y x {0})NV. Now, the preceding proposition asserts that
T(S,a) = (¢'(a))”" (¥ x {0}). But since g | U = po @, we have g'(a) = po ¢/ (a),
kerg'(a) = (¢'(a)) " (kerp) = (¢'(a)) ' (¥ x {0}). Hence T(S,a) =kerg'(a). O

The regularity condition on g can be relaxed thanks to the Lyusternik—Graves
theorem.

Proposition 2.91 (Lyusternik). Ler X and Y be Banach spaces, let W be an open
subset of X, and let g : W — Y be circa-differentiableata € S := {x e W : g(x) =0},
with g'(a)(X) =Y. Then T (S,a) = kerg'(a).

Proof. The inclusion T'(S,a) C kerg’(a) follows from Lemma 2.87. Conversely, let
v € kerg’(a). Theorem 2.67 yields some k, p > 0 such that for all w € B(a, p) there
exists some x € W such that g(x) =y:=0, ||x—w|| < k||g(w)]||. Taking w :=a+tv
with # > 0 so small that w € B(a, p), we get some x; € S satisfying ||x, — (a +1v)|| <
o(t) := k||g(x+1v)||. Thus v € T(S,a) and even v € T!(S,a). O

In the following example, we use the fact that when ¥ = R, the surjectivity
condition on g’(a) reduces to g'(a) # 0 (or Vg(a) # 0 if X is a Hilbert space).
Example-Exercise. Let X be a Hilbert space and let g : X— R be given by g(x) :=
$(A(x) | x) — %, where A is a linear isomorphism from X onto X that is symmetric,
i.e., such that (Ax | y) = (Ay | x) for every x,y € X. Let S := g~ !({0}). Foralla € §
one has Vg(a) = A(a) # 0, since (A(a) | a) = 1. Thus S is a C*-submanifold of X.
Taking X = R? and appropriate isomorphisms A, find the classical conic curves;
then take X = R and find the classical conic surfaces, including the sphere, the
ellipsoid, the paraboloid, and the hyperboloid.

A variant of the submersion theorem can be given with differentiability instead
of circa-differentiability when the spaces are finite-dimensional. Its proof (we skip)
relies on the Brouwer fixed-point theorem rather than on the contraction theorem.

Proposition 2.92. Let X and Z be Banach spaces, Z being finite-dimensional, let
W be an open subset of X, and let g : W — Z be Hadamard differentiable ata € W,
with Dg(a)(X) = Z. Then there exist open neighborhoods U of a in W,V of g(a)
inZ and amap h:V — U that is differentiable at g(a) and such that h(g(a)) = a,
goh=1Iy. In particular, g is open at a.

Now let us turn to representations via parameterizations. We need the following
result.

Theorem 2.93 (Immersion theorem). Ler P and X be Banach spaces, let O be an
open subset of P, and let f : O — X be a map of class C* with k > 1 such that for
some p € O the map Df (P) is injective and its image Y has a topological supplement
Z in X. Then there exist open neighborhoods U of a:= f(p) in X,Q of p in O,W of
0 in Z and a C*-diffeomorphism y : V := Q x W — U such that y(q,0) = f(q) for
all g € Q.
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Again the conclusion can be written in the form of a commutative diagram, since
f1Q=woj, where j: O — Q x W is the canonical injection y — (y,0). Again the
nonlinear map f has been straightened by v into a linear map j = w0 (f|Q).

Proof. LetF :0 xZ— X be givenby F(p,z) = f(p) +2z. Then F is of class C* and
F'(7,0)(p,2) = f'(P)(p) + z for (p,z) € P x Z, so that F'(p,0) is an isomorphism
from P X Z onto Y +Z = X. The inverse mapping theorem asserts that ' induces
a Ck-diffeomorphism y from some open neighborhood of (p,0) onto some open
neighborhood U of f(p). Taking a smaller neighborhood of (7,0) if necessary, we
may suppose it has the form of a product Q x W. Clearly, y(g,0) = f(g) for g € Q.

O

Example-Exercise. Let P:=R?, 0:= (—m,n) x (—n/2,7/2),X :=R>, and let f
be given by f (¢, 0) := (cos 0 cos @,cos 8 sin @, sin @). Identify the image of f.

Exercise. Let us note that the image f(0) of f is not necessarily a C*-submanifold
of X. Find a counterexample with P := R, X := R?.
A topological assumption ensures that the image f(0) is a C*-submanifold of X .

Corollary 2.94 (Embedding theorem). Let P and X be Banach spaces, let O be
an open subset of P, and let f : O — X be a map of class C* with k > 1 such that for
every p € O the map f'(p) is injective and its image has a topological supplement
in X. Then if [ is a homeomorphism from O onto f(O), its image S := f(O) is a
Ck-submanifold of X.

Moreover, for every p € O one has T(S, f(p)) = f'(p)(P).

One says that f is an embedding of O into X and that S is parameterized by O.

Proof. Given a := f(p) in S, with p € O, we take 0, C O, U, C X, W, C Z
and a C*-diffeomorphism vy, : V, := Q, x W, — U, such that y,(q,0) = f(g) for
all g € Q, as in the preceding theorem. Performing a translation in P, we may
suppose p = 0. Using the assumption that f is a homeomorphism from O onto
S = f(0), we can find an open subset U/, of X such that f(Q,) = SNU). Let
U:=U,NU,V:=y; ' (U), o:=y;'|U,Y := P, so that ¢(a) = (0,0). Let us
check relation (2.25),i.e., 9(SNU) = (Y x {0})NV.Forall (y,0) € (Y x {0})NV,
we have x := ¢~ !(,0) = y,(,0) = f(y) € S, hence x € SNU; conversely, when
xe€SNU = f(Q,) there is a unique g € Q, such that x = f(g), so thatx = y,(¢,0) =
0(2,0) and 9(x) = (,0) € (¥ x {0}) V.

Then T(S,a) = T(SNU,a) = (¢'(a)) (T ((Y x {0})NV,0)), and, since T ((¥ x
[01)1V,0) = Y4(O)(Px {0}) =¥ x {0}, we get T(S,a) = ¥ = f'(p)(P). O

Exercises

1. (Conic section) Let S C R? be defined by the equations x> +y?> —1 =0, x—z=0.
Show that S is a submanifold of R3 of class C* (it has been known since Apollonius
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that S is an ellipse). Find an explicit diffeomorphism (in fact linear isomorphism)
sending S onto an ellipse of the plane R? x {0}.

2. (Viviani’s window) Let S be the subset of R? defined by the system x> 4 y> = x,
x*+y%+2z%2— 1 =0. Show that S is a submanifold of R? of class C*.

3. (The torus) Let » > s > 0, let O := (0,27) x (0,27), and let f : O — R be
given by f(a,) = ((r +scosf)coso, (r+ scosB)sina,ssin B). Show that f is
an embedding onto the torus T deprived from its greatest circle and from the set
TN (R4 x {0} x R), where

2
T:= {(x,y,z) eR’: (\/x2+y2—r) +22—S2}.

4. Using the submersion theorem, show that T is a C*-submanifold of R3.

5. (a) (Beltrami’s tractricoid) Let f : R — R? be given by f(r) := (1/cosht,r —
tanht). Determine the points of 7 := f(IR) that are smooth.

(b) (Beltrami’s pseudosphere) Let g(s,7) := (coss/cosht,sins/ cosht,z — tanhr).
Determine the points of S := g(R?) that are smooth. They form a surface of
(negative) constant Gaussian curvature. It can serve as a model for hyperbolic
geometry.

6. Study the Roman surface of equation x?y? 4 y?z> + 72x> — xyz = 0. Consider its
parameterization (8, ¢) + (cos 6 cos @ sin @, sin 6 cos @ sin @, cos 8 sin O cos® Q).

7. Study the cross-cap surface {(1+cosv)cosu, (1+cosv)sinu,tanh(u— ) sinv) :
(u,v) € [0,27] x [0,1]} and compare it with the self-intersecting disk, the image of
[0,27] x [0, 1] by the parameterization (u,v) — (vcos2u,vsin2u,vcosu).

8. Study Whitney’s umbrella { (uv,u,v?) : (u,v) € R?}. Check that it is determined
by the equation x> —y?z = 0. Such a surface is of interest in the theory of
singularities. For this surface or the preceding one, make some drawings if you
can or find some on the Internet.

9. LetO:=(0,1)U(1,0) CR, f: 0 —R?being givenby f(¢) = (t+¢,2t +172).
Show that f is an embedding, but that its continuous extension to (0, +ec) given by
f(1) = (2,3) is of class C but is not an immersion.

10. Let X be a normed space and let f : X — R be Lipschitzian around x € X. Show
that f is Hadamard differentiable at x € X iff the tangent cone to the graph G of f at
(x, f(x)) is a hyperplane.

11. Show that the fact that the tangent cone at (x, f(x)) to the epigraph E of f is a
half-space does not imply that f is Hadamard differentiable at x.
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2.5.6 The Method of Characteristics

Let us consider the partial differential equation
F(w,Du(w),u(w)) =0,  we W, (2.26)

where W is a reflexive Banach space, Wy is an open subset of W whose boundary
dW, is a submanifold of class C2, and F : (w, p,z) + F(w, p,z) is a function of class
C? on Wy x W* x R. We look for a solution u of class C? satisfying the boundary
condition

uldwy =g, (2.27)

where g : Wy — R is a given function of class C>. We leave aside the question of
compatibility conditions for the data (F,g). The method of characteristics consists
in associating to (2.26) a system of ordinary differential equations (in which W** is
identified with W) called the system of characteristics:
w'(s) = DpF (w(s), p(s
P'(s) = —DyF(w(s),p
() = (DpF (w(s), p(s),2(s)), p(s))

,2(s)), (2.28)
5),2(s)) = D<F (w(s), p(s),2(s))p(2), (2.29)
: (2.30)

)
(

Suppose a smooth solution u of (2.26) is known. Let us relate it to a solution s —
(w(s),p(s),z(s)) of the system (2.28)—(2.30). Let

q(s) := Du(y(s)),  r(s) = u(y(s)),
where y(+) is the solution of the differential equation
Y (s) 1= DpF (y(s), Du(y(s)),u(¥(s))), ~ ¥(0) = wo.
Then
r'(s) = Du(y(s)) -y (s) = (q(s),DpF (¥(s),p(s),2(s))).
For all e € W, identifying W** and W, we have
q'(s)-e=D*u(y(s)) -y (s)-e = (D,F(y(s), p(s),z(s)),D*u(y(s)) - €).

Now, taking the derivative of the function F (-, Du(-),u(-)) and writing u, Du instead
of u(w), Du(w), we have

D\ F (w,Du,u)e + D,F (w,Du,u)D*u(w) - e + D,F (w, Du,u) Du(w)e = 0.

Thus, replacing (w, Du,u) by (y(s),q(s),(s)) and noting that e is arbitrary in W, we
get
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q'(s) = =DwF (w(s),q(s),7(s)) = D:F (w(s),q(s),7(s))q(s)-

It follows that s — (y(s),q(s),r(s)) is a solution of the characteristic system.
Taking the same initial data (wg, po,g(wp)), by uniqueness of the solution of the
characteristic system, we get y(s) = w(s), p(s) = ¢(s), and z(s) = r(s) := u(w(s)).
This means that knowing the solution of the characteristic system, we get the value
of u at w(s). If around some point w € W we can represent every point w of a
neighborhood of W as the value w(s) for the solution of (2.28)—(2.30) issued from
some initial data, then we get u around w. In the following classical example, the
search for the initial data is particularly simple.

Example. Let W :=R", Wy := R"~! xP, F being given by F(w, p,z) := p-b(w,z) —
c(w,z), where b: Wy x R — W, ¢ : Wy x R — R. Then, taking into account the rela-
tion D, F (w(s), p(s),z(s)) - p(s) = p(s) - b(w(s),z(s)) = c(w(s),z(s)), (2.28), (2.30)
of the characteristic system read as a system in (w,z):

In the case that b := (by,...,b,) is constant with b, # 0 and c(w,z) := 72X /k, with
k > 0, the solution of this system with initial data ((v,0),g(v)) € R" x P is given by

g(v)

wi(s) =bis+vi (i=1,....,n—=1), wy(s) =bps, z(s)= g

It is defined for s in the interval S := [0,g(v)¥). Given x := (xy,...,x,) € W, near
X € W), the initial data v is found by solving the equations b;s +v; =x; (i € N,_1),
Xy = bps: vi = x; — aix, with a; := b;/b,. What precedes shows that u is given by

8(X1 —aiXn, ..., Xp—1 — Gn_1Xy)

(1 —g(x1 —aiXp,.. .y Xn—1 _anflxn)kxn/bn)l/k

u(x) =

and is defined in the set { (x1,...,%,) : X,8(X1 —@1Xn, ..., X1 —@p 1) <b,}. O

A special case of (2.26) is of great importance. It corresponds to the case
w:= (x,t) € Wy := U x (0,7) for some 7 € (0,+e0] and some open subset U of
a hyperplane X of W and F((x,?),(y,v),z) := v+ H(x,t,y,2), so that (2.26) and the
boundary condition (2.27) take the form

Dyu(x,t) + H (x,t,Dsu(x,t),u(x,t)) =0,  (x,7) € Wy x (0,7), (2.31)
u(x,0)=g(x), xew. (2.32)
Such a system is called a Hamilton—Jacobi equation.

Let us note that as in the example of quasilinear equations, the general case can
be reduced to this form under a mild condition. First, since W is the interior of a



168 2 Elements of Differential Calculus

smooth manifold with boundary, taking a chart, we may assume for a local study
that Wy = U x (0, 7) for some 7 > 0 and some open subset U of a hyperplane X of
W. Now, using the implicit function theorem around w € dWp, F can be reduced
to the form F((x,?),(y,v),z) := v+ H(x,t,y,z), provided D,F(w,p,z) # 0. Such a
condition can be expressed intrinsically (i.e., without using the chart) by finding a
vector v transverse to dW, at w such that D,,F (w,y,Z) - v # 0.

The characteristic system associated with (2.31) can be reduced to

xl(s) =DyH(x(s),s,y(s),z(s)), (2.33)
' (s) = —DyH (x(5),5,9(5),2(5)) — D-H (x(s),5,5(5),2(5))y(s), (2.34)
7 (s) = DyH (x(s),s,y(s),2(s)) - y(s) — H(x(s),s,¥(s),2(s)), (2.35)

by dropping the equation #’(s) = 1 and observing that we do not need an equation for
Dyu(x(s),t(s)), since this derivative is known to be —H (x(s),s,y(s),z(s)). In order
to take into account the dependence on the initial condition (v, Dg(v),g(v)), the one-
jetof gatv e U C X, let us denote by s — (x(s,v),¥(s,v),Z(s,v)) the solution to the
system (2.33)—(2.35). Since the right-hand side of this system is of class C L the
theory of differential equations ensures that the solution is a mapping of class C! in
(s,v). In view of the initial data, we have

WweU,VeXx, D,x(0,v)V =V

It follows that for all v € U there exist a neighborhood V of v in U and some
o € (0,7) such that for s € (0,0), the map Xx; : v — X(s,v) is a diffeomorphism
from V onto V5 := X(s,V). From the analysis that precedes, we get that for x € V;
one has u(x,s) = Z(s,v) with v := (%) !(x). Thus we get a local solution to the
system (2.31)—(2.32). In general, one cannot get a global solution with such a
method: it may happen that for two values vy, v, of v the characteristic curves issued
from v; and v, take the same value for some # > 0.

Exercises

1. Write down the characteristic system for the conservation law
Dyu(x,t) 4+ Dyu(x,t) - b(u(x,t)) =0, u(v,0) =g(v),

where b : R — X, g: X — Rare of class C'. Check that its solution satisfies x(s,v) =
v+sb(g(v)), 2(s,v) = g(v). Compute D,X(s,v) and check that for all v € X, this
element of L(X,X) is invertible for (s,v) close enough to (0,7). Deduce a local
solution of the equation of conservation law from this property.
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2. (Haar’s uniqueness theorem) Suppose X =R and H : X x Rx X* xR - R
satisfies the Lipschitz condition with constants k, ¢:

V(t,x,y,y,2,2) € T xR, |H(x,t,y,2) —H(x,1,y',2)| <k|y—y|+L|z—7|,

where T is the triangle 7 := {(x,7) € X x [0,a] : x € [b+ {t,c — lt]}, for some
constants a,b,c. Show that if u;,u, are two solutions of class C! in T of the
system (2.31)—(2.32), then u; = u,. [For a generalization to X := R" see [925,
Theorem 1.6], [960].]

3. Suppose X =R, g=Ix,and H : X x Rx X* xR — R.. is given by H(x,7,y,z) :=
|t — 1|71/ 2y fort € [0,1), 4o otherwise. Using the method of characteristics, show
that a solution to the system (2.31)—(2.32) is given by u(x,7) = x —2+2+/1 —1 for
(x,1) € X x (0,1).

4. Suppose X = R, and that g and H are given by H(x,t,y,z) := —y*/2, g(x) :=
x?/2. Using the method of characteristics, show that a solution to the system (2.31)—
(2.32) is given by u(x,t) = x*/2(1 —t) for (x,t) € X x (0,1).

5. Suppose X = R, and that g and H are given by H(x,t,y,z) := e *yz(a'(t)e* +
V' (t)z%) — z, g(x) := x, where a and b are nonnegative functions of class C' satisfying
a(0) =1, b(0) =0, a+ b > 0. Show that the characteristics associated with the
system (2.31)—(2.32) satisfy X(¢,v) = a(t)v+b(t)v?, Z(t) = €'v, so that v = X(¢,v) is
a bijection. Assuming that there exists some T > 0 such that a(¢) = 0 for r > 7, show
that u(x,t) = e'b(r)~"/3x'/3 for (x,1) € X x [t,), so that u is not differentiable at
(0,7).

6. Suppose X = R, and that g and H are given by g(x) := x*/2, H(x,t,y,z) :=
a'(t)e 'y?/2+b(t)e 3'y* —z, where a and b are as in the preceding exercise. Show
that the characteristics associated with the system (2.31)—(2.32) satisfy x(z,v) =
a(t)v+4b()v3, Z(t) = € (a(t)v* /2 + 3b(t)v*), so that for t > T, v+ X(¢,v) is a
bijection on a neighborhood of 0, in spite of the fact that D,x(,0) = 0 and u(x,7) =
3.4-*Bp(1)x*/3, so that u is of class C! but not C? around (0,7).

2.6 Applications to Optimization

We will formulate necessary optimality conditions for the problem with constraint
(2) minimize f(x) under the constraint x € F,

where F is a nonempty subset of the normed space X called the feasible set or the
admissible set. These conditions will involve the concept of normal cone.
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2.6.1 Normal Cones, Tangent Cones, and Constraints

In fact, we will use some variants of the concept of normal cone that fit different
differentiability assumptions on the function f. When the feasible set is a convex
set these variants coincide (Exercise 6) and the concept is very simple.

Definition 2.95. The normal cone N(C,X) to a convex subset C of X at X € C is the
set of ¥* € X* that attain their maximum on C at X

N(C,x):={x"eX":Vxe(, (x",x—%) <0}.

Thus, when C is a linear subspace, N(C,x) = Ct, where C* is the orthogonal of
C (or annihilator of C) in X*:

Ct={x" X" :VxeC, x*,x)=0}.

When C is a cone, one has N(C,0) = C°, where C? is the polar cone of C.
In the nonconvex case the preceding definition has to be modified by introducing
aremainder in the inequality in order to allow a certain curvature or inaccuracy.

Definition 2.96. The firm or Fréchet normal cone Np(F,X) to a subset F of X at
X € F is the set of x* € X* for which there exists a remainder r (-) such that X* () +
r(- —X) attains its maximum on F at X:

X" €Np(F,X) < JrcoX,R) VxeF, X' ,x—X)+r(x—%)<0.

In other words, X* € X* is a firm normal to F at X iff for every € > O there exists
6 > 0 such that for all x € FNB(%,0) one has (X*,x —X) < &|jx—X||.

Equivalently,

X" € Np(F,X) <= limsup —

()‘c*,x—)‘c> <0
X—X, x#XH'x_'xH

We will give some properties and calculus rules in the next subsection. For
the moment it is important to convince oneself that this notion corresponds to the
intuitive idea of an “exterior normal” to a set, for instance by making drawings
in simple cases. We shall present a necessary condition using this concept without
delay. In it we say that f attains a local maximum (resp. local minimum) on F at X
if f(x) < f(x) (resp. f(x) > f(x)) for all x in some neighborhood of X in F. It is
convenient to say that x is a local maximizer (resp. local minimizer) of f on F.

Theorem 2.97 (Fermat’s rule). Suppose f attains a local maximum on F at X and
is Fréchet differentiable at X. Then

f' (%) € Np(F,X).
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If f attains a local minimum on F at X and is Fréchet differentiable at X then
0 € f'(X) + Nr(F,X).
Proof. Suppose f attains a local maximum on F at X and is differentiable at X. Set
fx)=fx + & x—%) +r(x—X)
with r a remainder, ¥* := f’(X), so that for x € F close enough to X one has
(X x=%) +r(x—X) = f(x) - f(x) <0.

Hence X¥* € Np(F,X). Changing f into —f, one obtains the second assertion. O

The second formula shows how the familiar rule f/(X) = O of unconstrained
minimization has to be changed by introducing an additional term involving the
normal cone. Without such an additional term the condition would be utterly invalid.

Example. The identity map f = Ig on R attains its minimum on F := [0, 1] at 0 but
FO)=1.

Example. Suppose F is the unit sphere of the Euclidean space R? representing the
surface of the earth and suppose f is a smooth function representing the temperature.
If f attains a local minimum on F at X, in general V f(X) is not 0; however, V f(%)
is on the downward vertical at X, and if one can increase one’s altitude at that point,
one usually experiences a decrease of the temperature. a

When the objective function f is not Fréchet differentiable but just Hadamard
differentiable, an analogue of Fermat’s rule can still be given by introducing a
variant of the notion of firm normal cone. It goes as follows; although this variant
appears to be more technical than the concept of Fréchet normal cone, it is a general
and important notion. It can be formulated with the help of the notion of directional
remainder: r : X — Y is a directional remainder if for all u € X \ {0} one has
r(tv)/t = 0ast — 0y, v— u; we write r € op(X,Y).

Definition 2.98. The normal cone (or directional normal cone) to the subset F at
X € cl(F) is the set N(F,X) := Np(F,x) of x* € X* for which there exists a directional
remainder r (-) such that X* () + r (- — X) attains its maximum on F at X:

X" €N(F,X):=Np(F,X) < 3Jrcop(X,R) VxeF, ' x—%)+rx—%)<0.
In other words, ¥ € X* is a normal to F at X iff for all u € X \ {0}, € > 0O there exists
6 > 0 such that (¥*,v) < & for every (¢,v) € (0, 6] x B(u,0) satisfying X+tv € F:

1
X" €N(F,X):=Np(F,X) <= YueX, limsup =&, (x+1tv)—x) <0.
(t.v)=(04,u), Xx+tveF !
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Let us note that the case u = 0 can be discarded in the preceding reformulation be-
cause the condition is automatically satisfied in this case with § = emin(1, [|x*||~!).
This cone often coincides with the Fréchet normal cone and it always contains it, as
the preceding reformulations show.

Lemma 2.99. For every subset F and every X € cl(F) one has Ng (F,X) C N(F,X).

The duality property we prove now compensates the complexity of the definition
of the (directional) normal cone compared to the definition of the firm normal cone.

Proposition 2.100. The normal cone to F atX is the polar cone to the tangent cone
to F atx:
(x*eN(F,x) < (YueT(FXx), (x,u)<0).

Proof. Givenx* € N(F,X) and u € T(F,x) \ {0}, for every € > 0, taking 0 € (0,¢)
such that (x*,v) < € for every (¢,v) € (0,8] x B(u,0) satisfying X+ ¢v € F and
observing that such a pair (¢,v) exists since u € T(F,X), we get (X*,u) < (X*,v) +
IIX*|| |lu — v|| < €+ €]|x*]|. Since € is arbitrarily small, we get (x*,u) <O0.

Conversely, given X* in the polar cone of T(F,X), given u € T(F,X), and given
€ >0, taking 6 > 0 such that 8 ||¥*|| < €, the inequality (x*,v) < & holds whenever
t€(0,8), vet ' (F—%)NB(u,d), since

X0 <@ u) + &y —u) < [[X| lu—v]| < S[F[| < e

If u € X\ T(F,X) we can find § > 0 such that no such pair (z,v) exists. Thus, we
have (x*,v) < e forevery (¢,v) € (0,8] x B(u, §) satisfyingXx+1v € F: ¥* € N(F,X).
O

Theorem 2.101 (Fermat’srule). Suppose f attains a local maximumon F atX € F
and is Hadamard differentiable at X. Then for all v € T (F,X) one has f'(x)v < 0:

(%) e N(F,x).
If f attains a local minimum on F at X, then for all v € T (F,X) one has f'(X)v > 0:
0 € f'(X) + N(F,X).

Proof. LetV be an open neighborhood of X in X such that f(x) < f(x) forallx € FN
V.Givenv € T(F,X), let (v4) — v, (t,) — 04 be sequences such that X+ #,,v, € F for
all n € N. For n large enough, we have X +1,v, € FNV, hence f(X+1,v,) — f(X) <O0.
Dividing by #, and passing to the limit, the (Hadamard) differentiability of f at X
yields f'(x)(v) <0. O

It is possible to give a third version of Fermat’s rule that does not suppose that
f is differentiable; it is set in the space X instead of its dual X*. In it, we use the
directional (lower) derivative (or contingent derivative) of f given by
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PEu) = liminf L(FE+v)— f()

(t,v)—(04,u) T

and the tangent cone to F' at X as introduced in Definition 2.86.

In view of their fundamental character, we will return to these notions of tangent
and normal cones. For the moment, the definition itself suffices to give the primal
version of Fermat’s rule we announced. Note that this version entails the preceding
theorem, since fP(%,-) = /(%) when f is Hadamard differentiable at X.

Theorem 2.102. Suppose f attains a local maximum on F at X. Then
fP&,u) <0 forallucT(F,%).

Proof. Let u € T(F,x). There exist (t,) — 04, (u,) — u such that X + t,u, € F for
all n € N. For n large enough we have f(X + tu,) < f(x), so that

fPE,u) < lin}linftl (fE+taun) — f(X)) <O0. i

n

For minimization problems, a variant of the tangent cone is required, since the
rule fP(x,u) > 0 for u € T(F,¥) is not valid in general.

Example. Let F:= {0} U{2 2":n € N} C Rand let f : R — R be even and given
by f(x) =0 forevery x € F, f(27%*1) = —272*1_ £ being affine on each interval
[27/,277+1]. Show that fP(¥,1) = —1 for X := 0, although f(¥) = min f(F).

Definition 2.103. The incident cone (or adjacent cone) to F at X € cl(F) is the set
THF,%) = {uecX:Y(t,) = 0y,3(uy) > u, F+tau, €F Vn}

={ueX:V(t,) = 04,3(x,) =X, (t, ' (xa—%) > u, x,€F Vn}.

It is easy to show that

1
ueT!(FX) < lim —d(X+1u,F)=0.

t—04 1
Let us also introduce the incident derivative of a function f at X by
(& u) :=inf{r e R: (u,r) € T'(Ep, %)},

where E is the epigraph of f and X7 := (X, f(X)).

Proposition 2.104. Suppose f is directionally stable at X in the sense that for all
ueX\{0} one has (1/t)(f(x+1v)— f(x+1tu)) = 0as (t,v) — (0,u). If f attains

a local minimum on F at X, then
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(& u) >0 foralluc T(F,X),

fP&,u) >0 foralluc T (F%).
Proof. Suppose, to the contrary, that there exists some u € T(F,X) such that
f'(x,u) < 0. Then there exists some r < 0 such that (u,r) € T!(E;,X¢); thus, if
(t,) = 04 and (u,) — u are such that X + f,u, € F for all n € N, one can find

a sequence ((vp,7s)) — (u,r) such that X7 +1,(vs,rs) € Ef for all n € N. Then
F&) +tyry > f(X+1,v,) foralln € N and

0>r> limnsup(l/t,,)(f()_c—i—t,,v,,) —f(®) = limnsup(l/t,,)(f()_c—i—t,,u,,) —f(x) >0,

a contradiction. The proof of the second assertion is similar. a

Exercises

1. Given an element X of the closure of a subset F' of a normed space X, show that
the tangent cone and the incident cone can be expressed in terms of limits of sets:

T(F,x) =limsup(1/f)(F —X), T!(F,%) = liminf(1/1)(F —X).

t—04 1=0+

2. Deduce from Exercise 1 that v € T'(F,X) iff liminf; o, (1/7)d(X+1v,F) =0 and
that v € T!(F,¥) if and only if lim;_o, (1/t)d(X+tv,F) = 0.

3. Find a subset F of R such that 1 € T(F,0) but T/(F,0) = {0}.

4. Show that if X is a finite-dimensional normed space, then for every subset F' of
X and every X € cl(F), one has N(F,X) = Nr(F,X).

5. Show that for every subset F of a normed space and every X € cl(F), the cones
N(F,x) and Np(F,X) are convex and closed.

6. Show that for every convex subset C of a normed space X and every ¥ € cl(C)
the cones N(C,x) and N (C,X) coincide with the normal cone in the sense of convex
analysis described in Definition 2.95.

7. Let f: R — R be differentiable at a € R and such that a is a minimizer of f on
some interval [a,b] with b > a. Check that f(a) > 0.

8. Show that the incident cone T/(F,X) can be called the velocity cone of F at X
since v € T!(F,X) iff there exists some c : [0,1] — F such that ¢(0) =X, c is right
differentiable at 0, and ¢/, (0) = v.
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2.6.2 Calculus of Tangent and Normal Cones

We devote this subsection to some calculus rules for normal cones. These rules will
enable us to compute the normal cones to sets defined by equalities and inequalities,
an important topic for the application to concrete optimization problems.

In order to show that the two notions of normal cone we introduced correspond
to the classical notion in the smooth case, let us make some easy but useful
observations.

Proposition 2.105. The notions of normal cone and of Fréchet normal cone are
local notions: if F and G are two subsets such that FN\V = GNV for some
neighborhoodV of X, then N(F,X) = N(G,%) and Ny (F,X) = Nr(G,X).

Proposition 2.106. Given normed spaces X ,Y andx € F C X,y € G CY, one has

N(F x G,(x,5)) = N(F,X) x N(G,5),
Nr(F x G, (x,¥)) = Np(F,X) X Np(G,5).

Proposition 2.107. The normal cone and the firm normal cone are antitone: for
F C G and every X € clF one has N(G,x) C N(F,x) and Nr(G,X) C Ng(F,X).
Moreover, if F is a finite union, F = J;c; F;, then

N(F,f):ﬂN(E,f), NF(F’)_C):ﬂNF(Ev)_C)

i€l i€l
This fact helps in the computation of normal cones, as the next example shows.

Example. Let F := {(r,s) € R*: rs =0}, so that F = F; UF, with F} := R x {0},
F, := {0} x R. Then since F; is a linear subspace, one has N(F;,0) = F:-; hence
N(F,0) = F{- nF;+ = {0}.

However, the computations of normal cones to intersections are not obvious. One
may just have the inclusions

N(FNG,%) DN(F,X)UN(G,X),  Np(FNG,X) D Np(F,X)UNp(G,X).

Example. Let X := R? with its usual Euclidean norm and let F := By +e¢, G :=
Bx — e, where e = (0,1). Then N(F N G,0) = R?, whereas N(F,0) UN(G,0) =
{0} xR.

Now let us show that the notions of normals and firm normals are invariant under
differentiable transformations (diffeomorphisms).

Proposition 2.108. Let g : U — V be a map between two open subsets of the
normed spaces X and Y respectively and let B C U, C C V be such that g(B) C
C. Then if g is F-differentiable, respectively H-differentiable, at X € B, then for
y := g(X), one has respectively
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Nr(C.3) € ('(®)T) ™" (NF (B,3), (2.36)

N(Cy) C (¢®T) " (N(B.%)).
Relation (2.36) is an equality when C = g(B) and there exist p > 0, ¢ > 0 such that
WeCnBG.p),  dEg '(»)NB) < cdyy). (2.37)

Proof. Let 3* be an element of Nr(C,¥): for some remainder r(-) and for all y € C
we have (7, —3) < r(||ly —¥||). The differentiability of g at ¥ can be written for
some remainder s:

8(x) —g(x) = A(x—X) +s(|lx—xl)), (2.38)
where A := g/(x). Taking x € B, since y := g(x) € C, we get

AT0"),x—x) = (v, 8(x) — g(x) — s([lx —x]))
< r(llg(x) —g@)) = ", s(llx —xI1)) := t(|lx = X[]),
where 7 is a remainder, since ||g(x) — g(X)|| < (J|A|| 4+ 1)|]x —X]| for x close enough to
X. The proof for the normal cone is similar. It can also be deduced from the inclusion
¢ ()T (B.x)) € T(C,9).
Now suppose C = g(B) and relation (2.37) holds for some p > 0, ¢ > 0. Then
for all y € CNB(y,p), there exists some x, € g~ '(y) N B satisfying |jx, —X|| <

2¢|ly —y||. Let y* € Y* be such that x* := ¢’ (x)T(y*) € Nr(B,X). Then there exists a
remainder r(-) such that

Vx € B, 5, (X)(x—%)) = (¥",x—X) < r(x—Xx).
Taking into account (2.38), we get for all y € CNB(3,p),
7",y =) = (7",8(ry) = 8®) < r(||xy —X[) + [7" [l s([|x, — %[,

and since ||x, —X|| < 2¢||y — ||, we conclude that 3* € Ng(C,y). |

Corollary 2.109. Let g: U — V be a bijection between two open subsets of the
normed spaces X and Y respectively such that g and h := g~ are H-differentiable,
respectively F-differentiable, at X and y := g(X) respectively, and let B C U, C =
g(B). Then we have respectively

N(B,X) =g (®)T(N(C.y))
and

Nr(B.X) = g'(%)T (N (C.5))-
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Proof. Since h'(¥)T is the inverse of g'(X)T, one has the inclusions of Proposi-
tion 2.108 and their analogues in which h,y,C take the roles of g,Xx,B,
respectively. O

For an inverse image, it is possible to ensure equality in the inclusions of
Proposition 2.108. However, a technical assumption called a qualification condition
should be added, for otherwise, the result may be invalid, as the following example
shows.

Example. Let X =Y =R, g(x) = x%,C = {0}, B= g~ '(C). Then N(B,0) = R #
' (X)T(N(C,0)) = {0}.

The factorization of Lemma 1.108 will be helpful for handling inverse images.

Proposition 2.110 (Lyusternik). Let X,Y be Banach spaces, let U be an open
subset of X, and let g : U — Y be circa-differentiable at X € U with g'(x)(X) =Y.
Then for S := g~ (3) with y := g(X) one has N(S,%) = Nr(S,%) = g'(X)T(Y").

Proof. Proposition 2.108 ensures that g'(x)T(Y*) C N¢(S,X) C N(S,X). Now, given
x* € N(S8,%), for all v € T(S,x) =kerg'(x) = —T(S,X) we have g'(x)v = 0, so that
Lemma 1.108 yields some y* € Y* such that x* = y* o g'(x) = ¢'(x)T(y*). O

A more general case is treated in the next theorem.

Theorem 2.111. Let X,Y be Banach spaces, let U be an open subset of X, and let
g:U — Y be amap that is circa-differentiable at X € U with A := g'(X) surjective.
Then if C is a subset of Y and if X € B:= g~ !(C), ¥ := g(¥) € C, one has

N(B.3) =g (X)T(N(C.y)),
Nr(B.X) = g'(%)" (N (C.5))-

Proof. We prove the Fréchet case only, leaving the directional case to the reader.
The Lyusternik—Graves theorem (Theorem 2.67) asserts the existence of ¢ > 0, ¢ >
0 such that for all y € B(¥, 0) there exists x, € g~ (v) satisfying ||x, — || < |y — ¥
Wheny € CNB(¥,0) we have x, € g !(C) = B; hence d(¥,¢ ' (y) N B) < d(%,x,) <
cd(y,y). Moreover, setting V := B(y,6),U := g~ '(V), B :=BNU,C :=CNV, we
have g(B') = C’ and Ng(B,X) = Np(B',X) and Np(C,y) = Ng(C',¥). Thus, we can
replace B with B’ and C with C’. Then Proposition 2.108 ensures that Ny (B,X) =
g(®)T(Nr(C.y)). O

2.6.3 Lagrange Multiplier Rule

As observed above, the usual necessary condition f'(a) = 0 in order that a function
f:X — R attain at a its minimum when it is differentiable there has to be modified
when some restrictions are imposed. In the present section we consider the frequent
case of constraints defined by equalities and we present a practical rule. The case
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of inequalities will be dealt with later on. The famous Lagrange multiplier rule is a
direct consequence of Fermat’s rule and Proposition 2.110.

Theorem 2.112 (Lagrange multiplier rule). Let X,Y be Banach spaces, let W be
an open subset of X, let f: W — R be differentiable at a, and let g : W — Y be
circa-differentiable at a with g'(a)(X) =Y. Let b := g(a). Suppose that [ attains
on S := g !(b) a local minimum at a. Then there exists some y* € Y* (called the
Lagrange multiplier) such that

fl(a)=y"og(a).

Example. Let us find the shape of a box having a given volume v > 0 and minimal
area. Denoting by x,y, z the lengths of the sides of the box, we are led to minimize

f(x,y,2) :=2(xy+yz+2x) subjectto g(x,y,z) :=xyz—v =0, x,y,2>0.

First, we secure the existence of a solution by showing that f is coercive on § :=
¢ 1(0). In fact, if wy := (Xp,Yn,22) € S and (||w,||) — +oo, one of the components
of wy, say x,, converges to +oo; then, since y, + 2, > 2./Ynzn = 2+/v/Xn, We get

f(Wn) > 2xn(yn +Zn) > 4\/ VXp —> +oo.

Now let (x,y,z) be a minimizer of f on S. Since the derivative of g is nonzero at
(x,y,z), the Lagrange multiplier rule yields some A € R such that

2(y+2) = Ayz,
2(z+x) = Azx,
2(x+y) = Axy.

Then multiplying each side of the first equation by x, and doing similar operations
with the other two equations, we get

Av = Axyz =2x(y+z) = 2y(z+x) = 2z(x+),

whence by summation, 3Av = 4(xy+ yz+ zx) > 0. Subtracting the above equations
one from another, we get

2(y—x)=2Az(y—x), 2(z—y)=Ax(z—Yy), 2(x—z)=Ay(x—2).

Since A,x,y,z are positive, considering the various cases, we get x = y = z. Since
the unique solution of the necessary conditionis w := (vl/ 3B %), we conclude
that w is the solution of the problem and the optimal box is a cube. We also note that
the least area is a(v) := f(w) = 6v*/3 and that A = 4v~'/3 is exactly the derivative
of the function v — a(v), a general fact we will explain later on that shows that the
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artificial multiplier A has in fact an important interpretation as the measure for the
change of the optimal value when the parameter v varies.

Example-Exercise. Let X be some Euclidean space and let A € L(X,X) that is
symmetric. Let f and g be given by f(x) = (Ax | x), g(x) = ||x||* — 1. Take v € Sx
such that f attains its minimum on the unit sphere Sy at v. Then show that there
exists some A € R such that Av = Av. Deduce from this result that every symmetric
square matrix is diagonalizable.

Exercises

1. (Simplified Karush-Kuhn-Tucker theorem) Let X,Y be Banach spaces, let
g:X — Y be circa-differentiable at ¥ with g'(X)(X) =Y, and let C C Z be a closed
convex cone of Y. Suppose X € F := g~ !(C) is a minimizer on F of a function
f:X — R that is differentiable at X. Use Theorem 2.111 and Fermat’s rule in order
to get the existence of some y* € C such that (¥*,g(¥)) = 0, f/(¥) +y* 0 g'(x) = 0.

2. (a) Compute the tangent cone at (0,0) to the set
Fi={(ns)eR*:s>|r|(1+r7)'}.

(b) Use Fermat’s rule to give a necessary condition in order that (0,0) be a local
minimizer of a function f on F, assuming that f is differentiable at (0,0).

(c) Rewrite F as F = {(r,5) € R?: g{(r,;s) <0,85(r,5) <0} with gy, given
by gi(r,s) = r(1+7*) "1 —s, ga(r,s) = —r(1+7*)"! —s and apply the
Karush—Kuhn—-Tucker theorem to get the condition obtained in (b).

3. (a) Compute the tangent cone to the set F = F' UF”, where
F = {(r,s) cR?: ;’4—i—s4—2rs=0}7

F":={(ns) €R22r4+s4+2rs:0},

first for some point a # (0,0), then for a = (0,0). [Hint: First study the
symmetry properties of F' and set s = ¢r.]

(b) Write a necessary condition in order that a differentiable function f : R?> —
R attains on F a local minimizer at (0,0). Assuming that f is twice
differentiable at (0,0), write a second-order necessary condition.

4. Give the dimensions of a cylindrical can that has a given volume v and minimal
area a(v). Give an interpretation of the multiplier in terms of the derivative of a(-).

5. Give the dimensions of a cylindrical can that has a given area a and maximal
volume v(a). Give an interpretation of the multiplier in terms of the derivative
of v(+).
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6. Give the dimensions of a box without lid that has a given volume v and minimal
area a(v). Give an interpretation of the multiplier in terms of the derivative of a(-).

7. Give the dimensions of a box without lid that has a given area ¢ and maximal
volume v(a). Give an interpretation of the multiplier in terms of the derivative
of v(+).

2.7 Introduction to the Calculus of Variations

The importance of the calculus of variations stems from its role in the history of
the development of analysis and from its efficacy in presenting general principles
that govern a number of physical phenomena. Among these are Fermat’s principle
governing the path of a ray of light and the Euler—Maupertuis principle of least
action governing mechanics. Historically, the calculus of variations appeared at the
end of the seventeenth century with the brachistochrone problem, solved in 1696 by
Johann Bernoulli. This problem consists in determining a curve joining two given
points along which a frictionless bead slides under the action of gravity in minimal
time. The novelty of such a problem lies in the fact that the unknown is a geometrical
object, a curve or a function, not a real number or a finite sequence of real numbers.
Thus, such a topic brings to the fore the use of functional spaces, even if one limits
one’s attention to one-dimensional problems.

In fact, the choice of an appropriate space of functions is part of the problem.
Several choices are possible. The most general one involves absolutely continuous
maps and Lebesgue null sets and is a bit technical; for many problems piecewise C!
curves would suffice. We adopt an intermediate choice.

Let E be a Banach space and let T be a compact interval of R (we will not
consider higher-dimensional problems, in spite of the fact that problems such as the
problem of minimal surfaces are important and although many partial differential
equations are derived from problems in the calculus of variations). Without loss of
generality, we may suppose T := [0,1]. We will use the space X := R'(T,E) of
functions x : T — E that are primitives of (normalized) regulated functions from 7
to E; this means that there exists a function x’' : T — E that is right continuous on
[0,1) and has a left limit x'(z_) for all # € (0, 1] with x'_(1) = x/(1_) such that

x(1) = x(0) + /0 "Y(s)ds, =

Then x’ is determined by x, since for each 7 € [0,1), x'(¢) is the right derivative of x
att and x'(1) is the left derivative of x at 1. We endow X with the norm

x[l = sup [lx(r) | + sup |2’ (¢)]]
teT teT
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It is equivalent to the norm x — [|x(0)|| + sup, 7 ||X(2) ||, as is easily seen. Then X is
a Banach space (use Theorem 2.59).

Given (eg,e;) € E X E, an open subset U of E x E x T, and a continuous function
L :U — R, the problem consists in minimizing the function j given by

) = /0 L) X (1), 1)

over the set W(ep,e;) of elements x of X such that x(0) = ¢y, x(1) = e, and
(x(£),x'(¢),t) € U for each t € T. We note that since L is continuous, the function
t v+ L(x(t),x'(t),t) is regulated, so that the integral is well defined. We have more.

Lemma 2.113. GivenU, L, and j as above, the set W := {x € X : cl(J'x(T)) C U},
where J'x(T) := {(x(t),X'(t),t) :t € T}, is open in X and j is continuous on W.

Proof. By Proposition 2.16, for all x € W, the set cl(J'x(T)) is a compact subset
of E x E x T. Thus, there exists some r > 0 such that B(J'x(T),r) C U. Then for
all w € X satisfying ||w —x|| < r one has w € W. Thus W is open in X.

Moreover, L being continuous is uniformly continuous around cl(J'x(T')) in the
sense that for every € > 0 one can find § > 0 such that for all (e,v,¢) € cl(J'x(T))
and all (¢/,v',t') € B((e,v,1),0) one has |L(¢’,V',1") — L(e,v,t)| < €. Therefore, for
all w € X satisfying ||w —x|| < 8, one has |L(w(t),w'(¢),1) — L(x(1),x'(¢),1)] < €,
hence |j(w) — j(x)| <e. O

Proposition 2.114. Suppose L is continuous on U and has partial derivatives
with respect to its first and second variables that are continuous on U. Then j is
Hadamard differentiable on W and for x € W, x € X one has

1
J(@)x= /o [D1L(x(t),% (t),1)x(t) + DoL(%(t),% (¢),1)x (¢)]dt.
Proof. Let us set L;(e,v) = L(e,v,t) for (e,v,t) € U and

Y= {(e1,e2,v1,v2,1) : Vs € [0, 1], (1 —s)er+sez, (1 —s)vi+sv2,1) € UL,
Z:={(wi,w2) EW?:Vt €T, (wy(t),wa(t),w)(t),wh(t),t) €Y},

and
K(er,ez,v1,va,t) := DL((1 —5)ey + sea, (1 —s)vy + sv2).

The compactness of [0, 1] easily yields that Y is open in E? x E? x T. Then a proof
similar to that of Lemma 2.113 shows that Z is open in X x X and that setting

1
J(wi,w2,x) ::/0 K (wi(£),wa (1), w) (1), Wy (0),1).(x(2),x' (1))dt

for (wi,wz,x) € Z x X, the map J is continuous from Z x X into R. Now, since
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L(el,VI,t) _L(e27v27t) = K(e17627v17v27t)7
substituting w; and wy and integrating over 7, we get
J(Wl) - J(WZ) = J(W15W27W1 - WZ)-

Since J is continuous, the function j is of class D' on W. In particular, it is Hadamard
differentiable on W and for x € W, x € X one has j/(x)(x) = J(X,x,x). O

Exercise. Prove that j is Gateaux differentiable using the definition and an inter-
change theorem between integration and derivation.

Exercise. Prove that in fact j is Fréchet differentiable.

Proposition 2.115. Suppose L satisfies the assumptions of the preceding proposi-
tion and X is a local minimizer of j on W (eg,e1). Then X is a critical point of j on
W (eq,e1) in the following sense:

j®v=0 Vv e Xp:=W(0,0):={xe X :x(0)=0=x(1)}.

Proof. Let N be a neighborhood of X in X such that j(w) > j(X) for every w € NN
W (eo,e1). Given v € X, for r € R with |r| small enough, we have w :=X+rv € W by
Lemma 2.113 and w(0) = e, w(1) = e;. Thus w € NNW(ep, e1 ), hence j(x+rv) >
Jj(x) for |r| small enough. It follows that j'(X)v = 0. O

Theorem 2.116 (Euler-Lagrange condition). Suppose L satisfies the assump-
tions of Proposition 2.114 and X € W is a critical point of j on W(eg,e;). Then
the function D1L(X(-),X (-),-) is a primitive of DoL(X(), ¥ (+),-): for everyt € [0,1)
the right derivative of Dy L(X(+),X (+),-) exists and is such that

% (DL(E(1),% (1)),1) = DIL(E(1),% (1),1). (2.39)

The solutions of this equation are called extremals.
We break the proof into three steps. Taking A(r) := D,L(1,x(1),X (¢)), B(t) :=
Dy L(t,%(t),X' (1)) in the last one, we shall get the result. The first step is as follows.

Lemma 2.117. Let f be a nonnegative element of the space R,(T,R) of normalized
regulated functions on T such that fol f(t)dr =0. Then f =0.

Proof. Suppose, to the contrary, that there exists some r € T such that f(r) > 0.
When r < 1, using the right continuity of f at r we can find some ¢, > 0 such
that 7+ & < 1 and f(s) > o for s € [r,r+ 8]. Then we get [y f(t)dt > fr“éf(t)dt >
ad > 0, a contradiction. If r = 1, a similar argument using the left continuity of f
at 1 also leads to a contradiction. ad

Lemma 2.118. Let F € R,(T,E*) be such that for all x € Xo:= {x € X :x(0) =0=
x(1)} one has fol F(t)-x'(t)dt = 0. Then F(-) is constant.
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More precisely, for ¢* := fol F(t)dt one has F(t) = e* forallz € T.

Proof. Since jol e*-x/(t)dr = 0 for all x € X, subtracting from F its means e*, we are
reduced to showing that F(-) = 0 when fol F(t) X' (t)dt = 0 for every x € Xy. Given
e € E,letusintroduce f, g: T — R,v,x: T — E givenby g(¢) = F(t)(e) := (F(1),e),
F(1) = (g(0)* v(s) :==F(s)(e)e := (F(s),e)e. x(1) = Jov(s)ds. We see that x(0) =0,
X (t)=v(t) fort €[0,1),x(1) = fol v(t)dr = (fol F(t)dt,e)e =0, since the means of
F is 0, so that x € Xy. Our assumption yields

1 1 1 1
/Of(t)dt:/o (F(t),e)F (1) (e)dt:/o F(t)((F(t),e)e)dt:/O F(t)-2/(t)dr = 0.

The preceding lemma ensures that f(¢) = 0 for every ¢ € T. Since e is arbitrary in
E,weget F(t)=0foreveryt €T. O

Lemma 2.119 (Dubois—Reymond lemma). LetA,B € R,(T,E*) be such that
1
Wx € Xo, / [A(e)x(r) + B(r)x' (1)) dt = 0.
0

Then B is a primitive of A: for everyt € T one has B(t) = B(0) + [5 A(s)ds.

Proof. Let us set C(t) := B(0) + [3 A(s)ds. Then for each x € X, the function ¢
C(1)x(r) has a right derivative t — A(¢)x(¢) + C(1)x/(¢), and by assumption,

0= /01 [A()x(t) +B(1)¥ (1)] dt = /01 {%(C(r)x(z))jL(B(t)—C(t))x/(t)} dt

1 1
= C(1)x(1) — C(0)x(0) + /O (B(t) — C(£))x (1)dr = /O (B(t) — C(t))X (1)d.

Lemma 2.118 ensures that B — C is constant. Since B(0) —C(0) =0, B=C. O

Corollary 2.120. Suppose the Lagrangian L is independent of e: L(e,v,t) = L(v).
Then for every extremal X(+), the function t — DL, (X (t)) is a constant.

Proof. Since D\L = 0, (2.39) is reduced to $D,L(t,%(t),¥'(t)) = 0, and hence
L(-,¥(-)) is constant. 0

When L is of class C2, the Euler-Lagrange equation (2.39) is an implicit ordinary
differential equation of order two. Let us show how it can be reduced to an explicit
first-order differential system under the assumption that for (e,t) € T x E the
function L., : v — L(e,v,t) is a Legendre function on U, :={v € E : (e,v,t) € U}.
We set V., := DL, (U,,) and we denote by V the union of the sets {e} x V., x {t}
and by H : V — R the Hamiltonian given by

H(e,p,t) = (p,v) — L(e,vt) for p := DyL(e,v,t),
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so that H,; := H e, -,t) is the Legendre transform of L, ;. We have seen that
DyH (e, p,t) =v <= p=DyL(e,v,1).

Assuming that DL is of class C', with D3L(e,v,t) invertible, we get that the
function v(e, p,r) determined by the implicit equation

p—DzL(e,v(e,p,t),t) =0

is differentiable with respect to e. Then in view of the expression of H and of the
preceding relation, abbreviating v(e, p,t) into v, for all ¢’ € E, one has

DiH(e,p,t)e' = (p,D1v(e,p,t).e') — DiL(e,v,t)e’ — D2L(e,v,t)(D1v(e,p,t)e’)
— _DIL(evv(euput)vt)ela

or
D\H(e,p,t) = —DiL(e,v(e,p,1),t). (2.40)

Theorem 2.121 (Hamilton). Suppose that forall (e,t) € T X E, the map D> L(e, 1)
is a diffeomorphism from U, onto its image V,;. Let X be an extremal and let
¥(t) := DoL(x(¢),X (t),t). Then the pair (X,y) satisfies the Hamilton differential
system

Proof. Plugging e =X(t), v=Xx(t), p := ¥(t) into the relation v = D,H (e, p,t), we
get the first equation. By the Euler—Lagrange equation (2.39) and relation (2.40), we
have

y/(t) = % (DZL(X(I),X/(I),Z‘)) = DlL()_C(t)ax/(t)vt) = _DIH()_C(I)vy(t)vt)'

Exercises

1. (Geodesics in a Hilbert space) Let E be a Hilbert space, U :=T X E x (E\{0}),
with 7 :=[0,1], and let L be the Lagrangian given by L(e,v,7) := ||v||. Given ey,
e1 € E, show that if ¥: T — E is an extremal over the set W (eg, e ) := {x € R'(T,E) :
X(T)c E\{0}, x(0) = eg, x(1) = e}, then 7 +— ¥ (¢)/ ||¥'(¢)|| is a constant vector
u. Setting s(t) := [§||x(r)|| dr, show that X(r) = eo + s(¢)u with u = (e; — o) /s(1),
so that X runs along the segment [eg, ¢1].
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2. (Classical mechanics) Let us consider a solid with mass m whose position is
determined by parameters (¢1,...,q,) € R" subject to a force F(qy, ..., qy) deriving
from a potential U(qy,...,qy,) in the sense that F(q1,...,q,) = VU(q1,...,qn). Its
kinetic energy is given by T'(v1,...,v,) = (1/2)m(v3 +---+v2). Setting

L(qla"'uqrhvla"'uvn) :T(Vla-~7Vn)+U(6117~'7CIn)7

show that the Euler—-Lagrange equations turn out to be the Newton equation

mq"(t) = F(q(t)),
in which ¢”(¢) := (¢} (¢),...,q,()) is the acceleration.

3. Suppose that the Lagrangian L is independent of 7. Show that if x(-) is an ex-
tremal, then the function ¢ — L(x(¢),x'(¢)) — D1L(x(¢),x'(¢)) - X' (¢) is constant on T

4. Let (e,v) — L(e,v) be a nonnegative Lagrangian on some open subset of E X E.
Using Exercise 3, show that every extremal of L is also an extremal of VL.

Conversely, show that if x(-) is an extremal of V/L such that for some reparame-
terization s — 0 (s), the Lagrangian L(y(s),’(s)) is constant, where y(s) := x(0(s)),
then y is an extremal of L.

5. Let E be a Hilbert space and let L be the Lagrangian given by L(e,v) := |[v||*.
Show that if X : 7 := [0,1] — E minimizes j : x — _fol [« (¢)||*ds over the set
W (eg,e1) :={x€R(T,E):x(0) = e, x(1) =ey, ¥'(T) CE\{0}},thent— ¥ (1) is
constant on 7' and ¥ is also an extremal of the length functional £ : x — [} [/ (z)||dt
over the set W (e, e;). Use the preceding exercise to show that conversely, if X is an
extremal of the length functional ¢ and if for some reparameterization 0 the function
s |IX'(6(s))| is constant, then Xo 6 is an extremal of j.

6. Fermat’s principle states that the trajectory of light is an extremal of the travel
time functional 7', associated with the Lagrangian L given by L(e,v,7) := 1/ ||v]|.
Derive the Descartes—Snell law of light refraction on the boundary of two media of
constant indices ¢; (i = 1,2) separated by a hyperplane.

7. (Lobachevskian geometry) Find the extremals of the length function

o - [ VAT,
"o x(1) ’

i.e., the geodesics, on the Poincaré half-plane P := R X (0,+o0) endowed with the
Riemannian metric L(e,v) = ||v|| /e2, where e; is the second component of e € P.
[Hint: Show that the half-circles with centers in R x {0} are geodesics, as well as
the half-lines issued from (0,0).]

8. (Brachistochrone problem) Show that for all a,b > 0, the cycloids given by
x(t) := (a(t —sint) + b,a(1 — cost)) are extremals of the integral functional whose
Lagrangian L : P x R? — R is given by L(e,v) := (e2)~'/?|v||, P:=R x P.



186 2 Elements of Differential Calculus

9. (Minimal surfaces of revolution) Show that the catenaries x(t) = ccosh(z/c)
(c > 0) are extremals of the integral functional whose Lagrangian L : R x R — R is
given by L(e,v) := ev/v2 + 1. They can be seen as sections of minimal surfaces of
revolution used in power stations.

2.8 Notes and Remarks

Differential calculus is part of every course in analysis, so that numerous textbooks
are devoted to it. Here we have been inspired by the books of Cartan [197],
Dieudonné [294], Lang [611, 612], which were among the first to give modern
presentations of the theory. A detailed study of the theory in topological linear
spaces are the papers by Averbukh and Smolyanov [49, 50]; see also [946, 947],
which contain interesting historical views. These works show that the notion of
differentiability has many variants. Mappings of class D' were introduced in
[779, 805]. Richard Hamilton showed the importance of such a class for implicit
function theorems in Fréchet spaces [466]. Theorems 2.79-2.81 are in the line of
results in [461,462] and [785, Theorem 4.1] but have new features. The terminology
“circa-differentiable” is not traditional but it reflects the nature of the concept and it
fits the notion of circa subdifferential (or subdifferential in the sense of Clarke). The
initial terminology was “strongly differentiable” [755] and was turned into “strictly
differentiable,” despite the fact that there is no strict inequality in the definition.

The paper of Dolecki and Greco [307] shows the difficulties in giving due credit
with the example of the contribution of Peano [778], that remained in shadow for
a long time. Another example is the credit given to Hadamard here that should be
confirmed [459].

The version of the Borwein—Preiss variational principle we present slightly
differs from the original one in [128]; it covers other cases, but the perturbation
is not given a precise form as in [128].

The name of Kantorovich is associated with Newton’s method in view of the
improvements made by this author (see [584]). The last exercise of Sect.2.5.3 is
inspired by [404], which contains several applications of the result. A proof of the
submersion theorem in the case that the image space is finite-dimensional can be
found in [462,785].

A breakthrough in differential geometry was the book [611], by Serge Lang, that
introduced in a neat manner differentiable manifolds modeled on Banach spaces.
Lyusternik is considered a pioneer in the computation of the tangent cone to an
inverse image using metric estimates (see [693, 694]). The subject was greatly
extended with the works of Ioffe [511,531, 538, and others].

As mentioned above, the calculus of variations was a strong incentive for the
development of differential calculus and analysis. Books on the topic abound.
In particular, [192, 197, 418, 549, 988] can be recommended as introductions.
A historical account is given in [450].



Chapter 3
Elements of Convex Analysis

How many goodly creatures are there here!
How beauteous mankind is! O brave new world,
That has such people in’t!

—William Shakespeare, The Tempest, V, 1

The class of convex functions is an important class that enjoys striking and useful
properties. A homogenization procedure makes it possible to reduce this class to the
subclass of sublinear functions. This subclass is next to the family of linear functions
in terms of simplicity: the epigraph of a sublinear function is a convex cone, a notion
almost as simple and useful as the notion of linear subspace. These two facts explain
the rigidity of the class, and its importance.

Besides striking continuity and differentiability properties, the class of convex
functions exhibits a substitute for the derivative that serves as a prototype for
nonsmooth analysis. The main differences with classical analysis are the one-sided
character of the subdifferential and the fact that a bunch of linear forms is substituted
for the derivative. Still, nice calculus rules can be devised. Some of them, for
instance for the subdifferential of the maximum of two functions, go beyond usual
calculus rules. Besides classical rules of convex analysis, we illuminate some fuzzy
rules for the calculus of subdifferentials. In doing so, we pave the way to similar
rules in the nonconvex case. Thus it appears that convex analysis is not an isolated
subject, but is part of a more general field. In fact, with differential calculus, it
constitutes one of the two roots of nonsmooth analysis.

In the case of convex analysis, there is no restriction on the spaces for what
concerns subdifferential rules, even if the case of reflexive spaces is somewhat
simpler than the case of general Banach spaces. Subdifferential calculus makes
it possible to formulate optimality conditions that have the precious particularity
of being both necessary and sufficient. Moreover, subdifferentials are closely linked
with duality, so that we provide a short account of this important topic. We also
gather some elements of the geometry of normed spaces that will be useful later on.

J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathematics 266, 187
DOI 10.1007/978-1-4614-4538-8_3, © Springer Science+Business Media New York 2013
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Even if we do not insist on the point, it appears that duality plays some role in the
interplay between convexity and differentiability of norms or powers of norms.

The class of convex functions also illustrates a typical feature of nonsmooth
analysis that shows a spectacular difference with classical analysis: the study of
functions of this class is intimately tied to the study of (convex) sets. The many
passages from functions to sets and vice versa represent a fruitful and attractive
approach that exemplifies the unity and the flexibility of mathematics and shows
how lively the field is: most of the developments of what is known as convex analysis
occurred during the second half of the twentieth century, and the topic is still under
development. As pointed out in the books [99, 126, 137, 871, 872], convexity is a
simple notion with much power and complexity.

3.1 Continuity Properties of Convex Functions

Convex functions enjoy nice properties for what concerns optimization. A simple
example is as follows.

Proposition 3.1. Every local minimizer of a convex function f : X — Re :=
RU{+eo} on a normed space (or topological vector space) X is a global minimizer.

Proof. Let X € X and let V be a neighborhood of ¥ such that f(X) < f(v) for all
v € V.Givenx € X, one can find 7 € (0,1) such that v :=X+(x —X) € V. Then by
convexity, we have 7f(x) + (1 — 1) f(X) > f(v) > f(%), hence f(x) > f(X). O

For convex functions, one has remarkably simple continuity criteria.

Proposition 3.2. Let f : X — R.. be a convex function on a normed space (or
topological vector space) X. If f is finite at some X € X, the following assertions
are equivalent:

(a) f is bounded above on some neighborhoodV of X;
(b) f is upper semicontinuous at x;
(c) fis continuous at X.

Proof. The implications (c) = (b) = (a) are obvious. Let us prove (a) = (b) and
(b) = (c). We may suppose that X = 0, f(X) = 0 by performing a translation and
adding a constant. Given & > 0, let m > sup f(V), m > €. Let U := em~'V. Then
foru € U, setting v := e 'mu € V, we have

fu) <em ' f(v)+(1—em ")f(0) <&,

and since U is a neighborhood of 0, f is upper semicontinuous at 0. In order to prove
from (b) that f is continuous at 0, we observe that forw € W := U N (—U) we have
0=£(0) < Sf(w)+ 5 f(—w) < L f(w)+ L&, whence f(w) > —e. O
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Remark. If V is the ball B[X,] and sup f(V) < m, then for ¢ := r~!(m — f(%))
one has

vxeB0,r],  fE+x)—fF <c|x,

since for x € B0, ], setting ¢ := r~ ! ||x||, taking u such that ||u|| = r, x = tu, one gets

fE+x) - () = f(1=0)x+1(X+u) - f(%)
<t(f(F+u) = f@) < m— f@) I

a property called quietness at X. In fact, for all x € B[0,r], since f(X +x) — f(X) >
—(f(x—x) = f(x)) > —c||x||, we have | f(x+ x) — f(X)| < c||x]||, a stability property
we will strengthen later on into a local Lipschitz property. a

The following results illustrate the uses of the preceding criteria.

Proposition 3.3. Suppose f : X — R.. is a convex function on a finite-dimensional
space X. Then f is continuous on the interior of its domain Dy := domf := FY(R).

Proof. Given X € intDy, let xy,...,x, € Dy be such that X belongs to the interior of
the convex hull C of {xy,...,x,} (for instance, one can take for C a ball with center
* for some polyhedral norm, X being identified with some R?). Then f is bounded
above on C by m := max(f(x;),...,f(x,)), hence is continuous at X. O

Proposition 3.4. Let f : X — R.. be a lower semicontinuous convex function on a
Banach space X. Then f is continuous on the core of its domain Dy (which coincides
with the interior of Dy).

Proof. Given X € coreDy, let m > f(X) and let C:= {x € X : f(x) <m}. Again we
may suppose ¥ = 0. Then C is a closed convex subset of X that is absorbing: for
all x € X we can find r > 0 such that 7x € Dy and for s > 0 small enough we have
frsx) < (1—15)f(0)+sf(rx) < m, so that rsx € C. Thus C is a neighborhood of 0
by Lemma 1.59, and f is continuous at 0 by Proposition 3.2 O

Convex functions enjoy an almost “miraculous” propagation property.

Proposition 3.5. Let f: X — R be a convex function on a normed space X. If f
is continuous at some X € Dy := domf then f is continuous on the interior of Dy.

Proof. Given xy € intDy, let us prove that f is continuous at x¢. Using a translation,
we may suppose xo = 0. Then since Dy is a neighborhood of 0, there exists some
r> 0 such thaty := —rx € Dy. Let V be a neighborhood of 0 such that f is bounded
above by some m on X+ V. Then by convexity, f is bounded above on

r(1+r) ' E+V)+ 1+ 5=r(1+1) 7'V € .4(0)
by r(1+7)"'m+ (1+r)~' £(3). Then by Proposition 3.2, f is continuous at xo.  [J

A crucial semicontinuity property of convex functions is the following.
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Theorem 3.6. If f is a convex function that is lower semicontinuous on a normed
space X, then f is lower semicontinuous on X endowed with the weak topology.

Proof. This is an immediate consequence of Mazur’s theorem: for every real
number r the sublevel set [f < r]:={x € X : f(x) <r} of fis closed and convex,
hence weakly closed. O

The preceding proof shows that the same property holds for quasiconvex
functions, i.e., functions whose sublevel sets are convex.

Corollary 3.7. A coercive lower semicontinuous convex function f on a reflexive
Banach space X attains its infimum.

Proof. The result is obvious if f takes only the value +oo (i.e., f = 4ooX). For f #
+ooX we pick xo € dom f and use coercivity to get some r > 0 such that f(x) > f(xo)
forx € X\ rBx. Since X is reflexive, rBy is weakly compact. Since f is weakly lower
semicontinuous, there exists some X € rBy such that f(x) < f(x) for all x € rBy, in
particular f(X) < f(xo), since xg € rBx. Then f(X) < f(x) forall x € X. O

Convexity and local boundedness entail a regularity property stronger than
continuity: a local Lipschitz property. In fact, the result is not just a local one:
the following statement and its corollary give a precise content to this assertion:
the corollary shows that a Lipschitz property is available on balls that may be big,
provided the function is bounded above on a larger ball. One even gets a quantitative
estimate of the Lipschitz rate.

Proposition 3.8. Let f be a convex function on a convex subset C of a normed space
X andlet o, € R, p > 0. Suppose f is bounded below by 3 on a subset B of C and
is bounded above by o. on a subset A of C such that B+ pUx C A, where Uy is the
open unit ball of X. Then f is Lipschitzian on B with rate p~" (ot — ).

Proof. Given x,y € B and § > |x — |, let z := y+pd~'(y — x) € A, since
B+pUx CA. Theny =x+1(z—x), where t := §(8 +p)~' € [0, 1]; hence

JO) = f0) <1(f(2) = f(x) <t(e—B) < 8p~ (o = B).
Interchanging the roles of x and y and taking the infimum on & in (||x— y||, <), we
get | f(y) = f(x) [<p~ (= B)llx—y]. O

The preceding statement is versatile enough to apply in a variety of geometric

cases. The simplest one is the case of balls.

Corollary 3.9. Suppose the convex function f on the normed space X is bounded
above by a on some ball B(X,r). Then for every s € (0,r) the function f is
Lipschitzian on the ball B(%,s) with rate 2(r —s) ' (a — f(%)).

Proof. Taking A := B(X,r),B := B(X,s), p :=r—s, f := 2f(X) — , it suffices to
observe that for all x € B one has f(x) > f by convexity. O

Corollary 3.10. Every convex function that is continuous on an open convex subset
U of a normed space is locally Lipschitzian on U.
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Now let us turn to some links between convex functions and continuous affine
functions. Hereinafter we say that a convex function is closed if it is lower
semicontinuous and either it is identically equal to —eo (in which case we denote
it by —eo¥) or it takes its values in R.. := R U {+oco}. Recall that f € RY is proper
if £ does not take the value —oo and if it is not the constant function +oo*. Then its
epigraph is a proper subset of X x R (i.e., is nonempty and different from the whole
space).

We observed that a lower semicontinuous convex function assuming the value
—oo cannot take a finite value (Exercise 1 of Sect. 1.4.1). Thus a lower semicontinu-
ous convex function f € R" taking a finite value is either proper or +oo* . Note that
given a closed convex subset C of X, the function given by f(x) = —eo for x € C,
f(x) = +eo for x € X \ C is an example of a lower semicontinuous convex function
that is not closed and not proper.

If f is the supremum of a nonempty family of continuous affine functions, then
f is either +oo% or a closed proper convex function. In both cases, and in the case of
f = —oX (which corresponds to the empty family), it is a closed convex function.
A remarkable converse holds.

Theorem 3.11. Every closed convex function is the supremum of a family of
continuous affine functions (the ones it majorizes). If f is proper, this family is
nonempty.

Clearly, if f = 42X, one can take the family of all continuous affine functions

on X, while if f = —eoX one takes the empty family. The following lemma is the

first step of the proof of this result for the case f # —ooX.

Lemma 3.12. For every lower semicontinuous convex function f : X — Re there
exists a continuous affine function g such that g < f. Moreover, if w € dom f and
r < f(w), we may require that g(w) > r.

Proof. The case f = +oo is obvious. Let us suppose f # +ooX, so that the epigraph
Ey of f is nonempty. Let w € dom f and r < f(w). The Hahn-Banach theorem
allows us to separate the compact set {(w,r)} from the closed convex set E: there
exist (h,¢) € X* x R=(X x R)* and b € R such that

V(x,s) € Ey, (h,x) +cs>b > (h,w) +cr. (3.1)

Taking x = w, s > f(w) > r, we see that ¢ > 0. Dividing both sides of the first
inequality by c, we get

s>—c'h(x)+c'b  Vxedomf, Vs> f(x).

It follows that f > g for g given by g(x) := —c¢~'h(x) + ¢~ 'h. Moreover, the second
inequality in relation (3.1) can be written g(w) > r. O

Now let us prove Theorem 3.11. Again, the cases f = +ooX, f = —ooX being
obvious, we may suppose dom f # &. Let w € X and r < f(w). If w € dom f, the
preceding lemma provides us with a continuous affine function g < f with g(w) > r.
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Now let us consider the case w € X \ dom f. Separating {(w,r)} from E¢, we get
some (h,¢) € (X x R)* and b € R such that relation (3.1) holds. Taking x € dom f
and s large, we see that ¢ > 0. If ¢ > 0, we can conclude as in the preceding proof.
If ¢ = 0, observing that b — h(w) > 0, taking a continuous affine function & such that
k < f (such a function exists, by the lemma) and setting

g:=k+nlb—nh),

with n > (b —h(w)) ™' (r —k(w)), we see that g(w) > r and g < f, since k < f and
b — h(x) <0 forx € dom f by relation (3.1) with ¢ = 0. O

Since lower semicontinuity is stable by the operation of taking suprema, one can
deduce Theorem 3.6 from Theorem 3.11.

3.1.1 Supplement: Another Proof of the Robinson-Ursescu
Theorem

We are in a position to prove the Robinson—-Ursescu theorem in the reflexive case
without using the notion of ideally convex set.

Theorem 3.13. Let W, X be Banach spaces, and let F : W = X be a multimap with
closed convex graph. If W is reflexive, then for every (w,X) in (the graph of) F such
that X = Ry (F(W) —X), i.e., X € core F(W), the multimap F is open at (w,X). In
fact, F is open at (w,X) with a linear rate in the sense that there exist some ¢ > 0,
7> 0 such that

Vre (0,7), B(x,r) C F(B(W,cr)).

Proof. Let us define a function f : X — R., by
fx) :=d@,F ' (x)) ;= inf{||w =] : w e W, x € F(w)}, xeX,

with the convention that inf@ = +eo. Since f(x) = inf{||w — W|| + tr(w,x) :w e W}
and since (w,x) — ||lw—w|| + 1z (w,x) is convex, f is convex. Let us prove that
f is lower semicontinuous on X by showing that for every r € R, its sublevel set
S¢(r) :=f1((—eo,r]) is closed. Let (x,) be a sequence of S¢(r) converging to some
x € X. Since X is reflexive and for all n € N the set F~!(x,) is closed, convex,
hence weakly closed, there exists some w, € F~!(x,) such that ||w, —w|| = f(x,).
The sequence (wy,), being contained in the sequentially weakly compact ball B[w, r],
has a subsequence that weakly converges to some w € B[w,r]. Since F is weakly
closed in W x X, we have (w,x) € F, hence f(x) < ||w—w|| < liminf, ||w, — | <r.
Thus S¢(r) is closed and f is lower semicontinuous, hence is continuous on the core
of its domain F(X) by Proposition 3.4. In fact, f is locally Lipschitzian around ¥,
so that there exist ¢ > 0, 7 > 0 such that f(x) = |f(x) — f(%)| < cd(x,%) for all x €
B(X,7). Thus for r € (0,7) and x € B(X,r), one can find w € F~!(x) with |[w —w| <
cr: the last assertion is proved. O
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The openness property of Theorem 3.13 can be strengthened to openness at a
linear rate around (W, ).

Corollary 3.14. Let F : W = X be a multimap with convex graph between two
normed spaces. Suppose that for some p,r > 0 and some (W,X) € F one has
B(x,r) C F(B(wW,p)). Then for every s € (0,r/3] there exists some ¢ > 0 such that

V(w,x) € B(w,p) X B(%,s), d(w,F~'(x)) < cd(x,F(w)).

Proof. Givens € (0,r/3],letc:=4(r—s)"'p and let (w,z) € B(W,p) x B(X,s) with
z € F(w). Then for every x € B(X,s), y € F(w) \ B(X,r) one has

d(x,y) > d(y,x)—d(x,x) >r—s>2s>d(x,z),

hence d(x,F(w)) < d(x,z) < 2s <d(x,F(w)\B(x,r)) and d(x,F(w) N B(%X,r)) =
d(x,F(w)).Let f : X — R be the function defined by

fx) :=d(w,F(x)), xeX,

with the usual convention inf & = +eo. Since f(x) = inf{||w —w'[|+ 1 (W, x) : W' €
W}, f is convex. Since B(X,r) C F(B(w,p)), f is bounded above by o := 2p on
B(x,r) and f(x) > 0. Thus Corollary 3.9 gives f(x) < f(z)+cd(x,z). Since f(z) =0,
taking the infimum over z € F (w) N B(X, r), we get the announced inequality. O

Exercises

1. Let X be a separable Hilbert space with Hilbertian basis {e, : n € N} and let the
function f : X — R be given by

f) =Y " forx=" xuen.
n=0

n=0

(a) Show that f is well defined on X, bounded above by 1 on the unit ball, and
everywhere bounded below by 0.

(b) Show that the Lipschitz rate of f around ¢y is at least k + 2.

(¢) Deduce from what precedes that f is not Lipschitzian on the ball rBx with r > 1.
Observe that f is not bounded above on such a ball. [Inspired by [852].]

2. Using the data and the notation of Corollary 3.9 and noting that f is bounded
above on B(X,s) by (1 —r~'s)f(%) + r~'sa, hence is bounded below by 8 := (1 +
r~1s) (%) — r~'sor on this ball, show that the Lipschitz rate of f on B(%,s) is at most

(1+r71s)(r—s)"Ya— f(7).
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3. Prove a similar estimate of the Lipschitz rate of f when one supposes that f is
bounded above by some ¢ on the sphere with center X and radius r.

4. (a) Let f : X — R be a uniformly continuous function on a normed space. Show
that for every 6 > 0 there exists k > 0 such that d(f(x), f(y)) < kd(x,y) for all
x,y € X satisfying d(x,y) > 6 [Hint: Use a subdivision of the segment [x, y] by points
u; such that d(u;,u;i+1) < o, where o > 0 is such that d(f(«), f(v)) < 1 whenever
u,v € X satisfy d(u,v) < o]

(b) Prove that every uniformly continuous convex function f on X is Lipschitzian.
[Hint: Use (a) and Proposition 3.8].

5. (The log barrier) Prove that f : R — R.. given by f(u) = —log(detu) if u is
a symmetric positive definite matrix, +oo otherwise, is a convex function.

6. Deduce from Proposition 3.4 that for every closed convex subset of a Banach
space one has intC = coreC. [Hint: Use the indicator function i¢ of C.]

7. Prove that on the dual X* of a nonreflexive Banach space one can find a convex
function f that is continuous for the topology associated with the dual norm, but
that is not lower semicontinuous for the weak* topology. [Hint: Take f € X**\ X ]

3.2 Differentiability Properties of Convex Functions

Convex functions have particular differentiability properties. The case of one-
variable functions, which is our starting point, will be our first piece of evidence.
However, it is a substitute for the derivative that will be the main point of this section.
Later on, we will see that this new object, called the subdifferential, enjoys useful
calculus rules. The idea of replacing a linear functional by a set of linear forms will
be our leading thread in all that follows.

3.2.1 Derivatives and Subdifferentials of Convex Functions

We first observe that if f: 1 — R is a finite convex function on some interval / of R,
then for r < s <t in I the following inequalities hold:

[6) = 1) _ fO=F0) _ F0=F().

s—7r t—r - t—s

(3.2)

They express that the slope of the secant to the graph of f is a nondecreasing
function of the abscissas of its extremities and stem from the convexity inequality

76 = (=0 3200) < 22+ T

t—r t—r T t—r t—r
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(since the coefficients of f(r) and f(¢) are in [0, 1] and have sum 1), yielding

S—r t—s

fl)=f(r) < (f@O)=f(),  F)=f(s) =

T t—r" T t—r

(f(6) = f(r))-

Lemma 3.15. If f : [ — R is a finite convex function on some interval I of R, then
for every s € I\ {supl} the right derivative D,f(s) := f\(s) of f at s exists in
RU{—eo} and is given by

SO 1) _ SO~ f(5)

=54 t—s t>s r—s

If, moreover; s is in the interior of I, then D, f(s) is finite, the left derivative D;f (s)
exists and is finite, and Dyf(s) < D,f(s). Furthermore, the functions s — D,f(s)
and s — Dy f(s) are nondecreasing.

Proof. The first assertion is a direct consequence of the existence of a limit for
the nondecreasing function ¢ — (t —s)~' (f(¢) — f(s)) on (s,supl). The second
assertion stems from the fact that when s € int/, the limit is finite, since by (3.2),
for r < s this quotient is bounded below by (s —r)~' (f(s) — f(r)). Thus (s —
1)1 (F(8) = () < Dof(s) < (t—s) (£(¢) — £(s)). Similarly, changing (s,1) into
(r,5), we have D,.f(r) < (s—r)~' (f(s) — f(r)), hence D, f(r) < D,f(s). Changing
f into g given by g(t) := f(—1t), we get the assertions about the left derivative.
The inequality Dy f(s) < D, f(s) is obtained by a passage to the limit as  — s and
r — s_ in relation (3.2). O

It may happen that the left derivative D, f of a convex function f does not
coincide with the right derivative (consider r — |r|). Relation (3.2) shows that for
r<tonehas D,f(r) <Dyf(t). Thus if D,f(t) < D,f(t), one gets lim,_; D,f(r) <
Dyf(t) < Dyf(t), and D,f(-) has a jump at ¢. Since D,f(-) is nondecreasing, such
points of discontinuity of D, f(-) are at most countable. Since f is nondifferentiable
att if and only if Dy f(t) < D, f(t), we get the next result.

Proposition 3.16. Letr f : I — R be a convex function on an open interval of R.
Then the set of points at which f is not differentiable is at most countable.

The following characterizations of convexity are classical and useful.

Proposition 3.17. Let f : I — R be a differentiable function on an open interval
of R. Then f is convex if and only if its derivative is nondecreasing. If f is twice
differentiable, then f is convex if and only if for all r € I one has f"(r) > 0.

Proof. The necessary condition is a consequence of Lemma 3.15. Let us prove
the sufficient condition. Let f be differentiable with nondecreasing derivative.
Given r,t € I and s € (r,t), we have s = ar+ bt with a = (1 —r)" ' (t—s) > 0,
b= (t—r) " (s—r)>0,a+b= 1. The mean value theorem yields some p € (r,s)
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and some g € (s,1) such that (=)~ (f(s) — £(r)) = £'(p), (1—5)" (£()— £(s)) =
f'(q). Since f'(p) < f'(q), rearranging terms, we get
(t=r)f(s) < (t=9)f(r)+(s=r)f(2).
This is equivalent to f(s) < af(r) +bf(t). Thus f is convex. The last assertion is
given by elementary calculus. a
Now suppose f : X — R.. is defined on a vector space X.
Proposition 3.18. If f : X — Rw. := RU {+o0} is a convex function on a vector

space X, then for all x € dom f and for all v € X the radial derivative

df () i lim LEFM =)
t—04 t
exists and is equal to infy~ot = (f(x+1v) — f(x)). It is finite if x € core(dom f).

Proof. Let g be given by g(¢) = f(x+1v). Then g is convex and its right derivative at
0is d.f(x,v). Itexists in [—eo, 4-00) if (x+ (0,0)v) Ndom f is nonempty, and it is +oo
otherwise. Even in the latter case, this right derivative is inf,~or ! (g(¢) — g(0)) =
inf~o¢ =" (f(x+1v) — f(x)). When x belongs to core(dom f), for every v € X, 0 is
in the interior of dom g, and we can conclude with Lemma 3.15. a

Proposition 3.19. If f : X — R.. is a convex function on a vector space X, then for
all x € dom f, the radial derivative d, f(x,-) is a sublinear function.

Proof. Clearly d,f(x,-) is positively homogeneous. Let us prove that it is subaddi-
tive: for every v,w € X we have f(x+ 3t(v+w)) < 3 f(x+1v)+ 1 f(x+1w); hence

dif vt = tim 2 [ 504w - 1)

< lim l(f(x—i—tv)—f(x))—I— lim l(f(x+tW)—f(X))

T 04 1 t—04

=drf(x,v)+d-f(x,w). O

The preceding statement can also be justified by checking that
drf(x,v) =inf{s: (v,s) € T"(Ef,xf)},

where E; is the epigraph of f, x; := (x, f(x)), and T"(E,xy) is the radial tangent
cone to Ey at xy, where the radial tangent cone to a convex set C at z € C is the set

T"(C,z) =Ry (C—2).

When X is a normed space, T"(C,z) is not closed in general, as simple examples
show. Therefore, it is advisable to replace it with the tangent cone T (C,z) to C at z.
In the case that C is convex, T'(C, z) is just the closure of 7"(C,z). In the case that C
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is the epigraph of a convex function f finite at x and z := xy := (x, f(x)), the tangent
cone T(C,z) is the epigraph of the directional derivative of of f at x defined by

Fle) = dfey) = lmint w

Since f'(x,-) = df(x,-) is lower semicontinuous, it has better duality properties
than d,.f(x,-), and it is as closely connected to the following fundamental notion as

drf(x,-) is.

Definition 3.20. If f: X — R.. is a function on a normed space X and x € X, then
the Moreau—Rockafellar subdifferential of f at x is the empty set if x € X \ dom f,
and if x € dom f, it is the set d f(x) := dyrf(x) of x* € X* such that

YweX, Fw) > flx)+ (x",w—x). (3.3)

This is a global notion that is very restrictive for an arbitrary function. For
a convex function it turns into a crucial tool that is a useful substitute for the
derivative, as we will shortly see. A strong advantage of the Moreau—Rockafellar
subdifferential is that it yields a characterization of minimizers.

Proposition 3.21. A function f on a normed space X attains its minimum at x €
dom f if and only if 0 € d f(x).

The result is an immediate consequence of the definition. Calculus rules will
make it efficient. In particular, they enable us to give optimality conditions for
problems with constraints.

A first consequence of the following result is that the subdifferential of a convex
function f is not just a global notion, but also a local notion.

Theorem 3.22. If f is a convex function on a normed space X and x € dom f, then
xedf(x)=WweX (x*,v) <df(x,v)
= WweX (@) <df(x,v).
If x € core(dom f) and f is Gdteaux differentiable at x, then d f(x) = {Df(x)}.

Recall that f is said to be Gdteaux differentiable at x with derivative Df(x) :=
{ € X*if f is finite at x and for all v € X,

flrtv) = fx)

; —L(v)ast—0, t#£0.

Proof. Given x* € df(x), forevery t > 0, u € X we have

(o tu) < fx+tu) = f(x).
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Dividing by 7 and taking the liminf as (¢,u) — (04,v), we get (x*,v) < df(x,v) <
d,f(x,v). Now if f is convex and if x* satisfies the inequality (x*,v) < d, f(x,v) for
all ve X, then for v € X, 1 € (0, 1), by the monotonicity observed in relation (3.2),
we have

<X*7V> < drf(X,V) <

~ | —

(fle+1v) = f(x) < flxtv) = fx).

Setting v = w — x, we obtain relation (3.3). a

A simple interpretation of the subdifferential of a function can be given in terms
of the normal cone to its epigraph. The normal cone to a convex subset C of a
normed space X at some z € C is defined as the set N(C,z) of z* € X* such that
(z",w—2z) <0 for every w € C; thus it is the polar cone to the radial tangent cone
T7(C,z), and also, by density, it is the polar cone to T(C,z).

Proposition 3.23. For a convex function f on a normed space X and x € dom f, one
has the following equivalence in which Ey is the epigraph of f and x¢ := (x, f(x)):

x"€df(x) <= (x",—1) e N(Ef,xy).
The proof is immediate from the definition of d f(x):
(x*,—1) eN(Ef,x5) <=V (w,r) €Ef (x",w—x)—(r—f(x)) <0<=x" € df(x).

Let us describe the notion of normal to a convex set in terms of subdifferentials.

Proposition 3.24. For a convex subset C of a normed space X, the normal cone to
C at x € C is the subdifferential of the indicator function 1¢ to C at x. It is also the
cone R ddc(x) generated by the subdifferential of the distance function to C at x.

Proof. By definition, x* € N(C,x) iff (x*,w—x) <0 forall x € C. Since 1¢c(w) =0
for w € C and 1¢(w) = o for w € X \ C, this property is equivalent to x* € dic(x).
The inclusion R, ddc(x) C N(C,x) is obvious: when r € Ry, z* € dd¢(z), one has

Yw € C, (rz",w—x) < rdc(w) — rdc(x) = 0.

Conversely, when x* € N(C,x), the function —x* attains its infimum on C at x, and
is Lipschitzian with rate ¢ = ||x*||, so that by the penalization lemma, —x* + cdc
attains its infimum on X at x; then 0 € d (—x* +cdc) (x), which is equivalent to
x* € cdde(x). O

The last argument shows the interest in having calculus rules at one’s disposal.
Such rules will be considered in the next section.

A simple consequence of the subdifferentiability of a convex function f at a point
x (i.e., of the nonemptiness of df(x)) is the lower semicontinuity of f at x. More
interesting are the following criteria for subdifferentiability.
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Theorem 3.25 (Moreau). If a convex function f on a normed space X is finite
and continuous at x, then d f (x) is nonempty and weak™ compact. Moreover, for all
ueX,

£ (x,u) = max{{(x*,u) : x* € df(x)}.

Proof. Forevery r > f(x) there exists a neighborhood V of x such that V x (r,e0) is
contained in the epigraph E¢ of f. Thus the interior of E is convex and nonempty.
It does not contain x; := (x,f(x)), since for s < f(x) close to f(x) one has
(x,s) ¢ Ef. The geometric Hahn-Banach theorem yields some (u*,c) € (X x R)*
such that

(u* s wy+cr> (' ,x)+cf(x) V(wr)€intEy.
This implies (by taking w = x, r = f(x) + 1) that ¢ > 0 and, by Lemma 1.56, that
(W'sw—x)y+c(r—f(x)) >0 V(w,r) € Ey.
In turn, this relation, which can be written
fw) = f(x) > (—c'u*w—x) VYweX,

shows that x* := —c~!u* € df(x). Thus df(x) is nonempty.
Since d f(x) is the intersection of the weak™ closed half-spaces

Dy :={x"eX": (x",w—x) < f(w)—f(x)}, w e domf,

it is always weak™ closed. When f is continuous at x, taking p > 0 such that f(w) <
f(x)+ 1 forw € B(x,p), for all x* € df(x), we have ||x*|| = p~'sup{(x*,w —x) :
w € B(x,p)} < p~!. The second assertion will be proved with the alternative proof
that follows. O

Alternative proof. By the remark following Proposition 3.2 we can find ¢ € R
and r > 0 such that |f(x +v) — f(x)| < ¢|v|| for v € B(0,r). It follows that
|f'(x,w)] < c||w| for w € X. Then given u € X, the Hahn-Banach theorem yields
a linear functional x* such that x*(u) = f’(x,u) and x* < f'(x,-) < c||||. Thus x* is
continuous and x* € d f(x). O

Remarks. (a) Without the continuity assumption, d f(x) may be unbounded. It is
the case for the indicator function of Ry on X = R, for which df(0) = —R,.

(b) It may happen that d f(x) is empty at some point x of the domain of f: this
fact occurs for X =R, x =1, f(u) = —v1 —u? for u € [—1,1], f(u) = +oo for
u € R\ [—1,1], although f is continuous on (—1,1). O

Examples. (a) For f := ||| onehas d ||-|| (x) = {x* e X*: [|x*|| = 1, (x*,x) = ||x]|}.
(b) Let X be a normed space and let j(-) := % [|-|I*. Then 9 j(x) = J(x), the duality
(multi)map defined by J(x) := {x* € X* : ||x*|| = |lx]|, (x*,x) = ||x]|*}, and J (x) is
nonempty, as shown by applying Corollary 1.72 or Theorem 3.25. O
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Corollary 3.26. Let f: X — R, be a convex function finite and continuous at x € X.
If df(x) is a singleton {x*}, then f is Gateaux and Hadamard differentiable at x and

Df(x) =x".

Proof. The preceding theorem ensures that f/(x,-) = x*. Thus f is Géteaux
differentiable. Since f is Lipschitzian around x, it is Hadamard differentiable. O

Corollary 3.27. Let f be a convex function on a normed space X. Suppose the
restriction of f to the affine subspace A generated by dom f is continuous at x €
dom f. Then 0 f(x) is nonempty.

Proof. Without loss of generality, we may suppose x = 0, so that A is the vector
subspace generated by dom f. The preceding theorem ensures that the restriction
f | A of f to A is subdifferentiable at 0. Then every continuous linear extension of
every element of d(f | A)(0) belongs to df(0), and such extensions exist by the
Hahn-Banach theorem. ad

Corollary 3.28. Let f be a convex function on a finite-dimensional normed space
X and let x € ridom f (i.e., be such that Ry (dom f — x) is a linear subspace). Then
df(x) is nonempty.

Proof. Recall that for a subset D of X, riD is the set of points that belong to the

interior of D in the affine subspace Y generated by D. Taking D = dom f, we have

that the restriction g of f to Y is continuous at x. The preceding corollary applies.
O

It will be proved later that for every closed proper convex function f on a Banach
space X, the set of points x € X such that d f(x) is nonempty is dense in dom f.

Let us give a subdifferentiability criterion using the concept of calmness.
A function f: X — R.. finite at ¥ € X is said to be calm at X if —f is quiet at X, i.e., if
there exist ¢ € R, and a neighborhood V of X such that f(x) — f(¥) > —c||x —X|| for
all x € V. If one can take V = X, one says that f is globally calm at . The calmness
rate of f at X is the infimum 7, (%) of the constants ¢ > 0 for which the preceding
inequality is satisfied on some neighborhood of X. The remoteness of a nonempty

subset S of X or X* is the number p(S) := inf{||s|| : s € S}.

Proposition 3.29. A convex function f : X — R finite at some X € X is subdiffer-
entiable at X iff it is globally calm at X, if and only if it is calm at X. Moreover, the
calmness rate of f at X is equal to the remoteness p(d f(x)) of d f(X).

Proof. 1If d f(X) is nonempty, for every element X* € d f(X) one can take ¢ = ||X*|| to
get global calmness, so that y¢(X) < p(df(X)). Conversely, if one can find ¢ € R
such that f(X+x) — f(X) > —c|x|| for all x € X, then the sandwich theorem yields
some x* € X* such that f(X+x) — f(X) > (x*,x) > —c||x|| for all x € X. Then x* €
df(X) and x* € ¢By~, so that p(d f(x)) < yy(X) and equality holds. O

Exercise. Establish the inequality xy < p~'x? + ¢~ 'y? forevery x,y € R, p,qg > 1
satisfying p~' +¢~! = 1 by minimizing the function x — p~'x? — xy for a fixed
y > 0. Deduce from that inequality Holder’s inequality:
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" n p s, 1/q
Va:= (a;), b:= (b)) € R", Y |aibi| < <2 |a,»|"> (Z Ibilq> :
i=1 i=1 i=1

[Hint: Set s; := a;/ [|al|,, #i := bi/[|b]|,, with |[a][, = (215i§”|ai|l’)1/p, loll,
(Zi<ica b)) and note that Zi<icy|sil” = 1, Zicicn|ti|? = 1, Zi<icnlsiti]
Zicica(p~sil? g7 ul").]

N

Exercise. (a) Let A be a positive definite symmetric matrix, let A; (resp. A,,) be its
smallest (resp. largest) eigenvalue, and let A := \/A4;.4,. Check that the function
frit—t/A+A/tis convex on [A;,A,] and satisfies f( M M/ A+ M =
f(An), whence f(t) < \/A1/An+ /An/A; for allt € A1, A

(b) Show that  is an eigenvalue of A ~!A +AA~! if and only if u is an eigenvalue
of A. [Hint: Reduce A to a diagonal form.]

(¢) Using the inequality 2v/ab < a+ b for a,b > 0, show that 2+/(Ax, x).(A~Tx,x) <
A1 {(Ax,x) + A (A~ x,x) for all x € R".

(d) Deduce from this Kantorovich’s inequality:

Vx e R, (Ax,x)- (A" 'x,x) < (1/4) (VA /A + VA /A1) ||x]%

3.2.2 Differentiability of Convex Functions

For differentiability questions, too, convex functions enjoy special properties. A first
instance is the following result, which displays an easy test for differentiability using
the functions

re(w) := fx+w)+ fx—w) —2f(x), (3.4)
o(t,u) = (1/0)(f(x+tu) + f(x —tu) — 2f(x)). (3.5)

Proposition 3.30. A convex function f : X — R, finite and continuous at some
point x € X is Fréchet (resp. Hadamard) differentiable at x if and only if ry is a
remainder (resp. if for all u € Sx one has o,(t,u) — 0ast — 0).

Proof. Necessity is obtained by addition directly from the definitions. Let us prove
sufficiency in the Fréchet case. Since f is finite and continuous at x, df(x) is
nonempty. Let x* € d f(x). Then the definition of df(x) and (3.4) yield

0 < flrtw) = fl) = &5 w) = f(x) = Flx—w) + (5, =w) +re(w) <re(w).

That shows that f is Fréchet differentiable at x with derivative x*. The Gateaux case
follows by a reduction to one-dimensional subspaces; since f is continuous at x, it
is Lipschitzian around x, so that Gateaux differentiability coincides with Hadamard
differentiability. O
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Two other instances arise with automatic continuity properties of derivatives.

Proposition 3.31. If f : W — R is continuous and convex on an open convex
subset W of a normed space X and if f is Gdteaux differentiable at x € W, then
[ is Hadamard differentiable at x and df is continuous at (x,v) for all v € X. If,
moreover, f is Gdteaux differentiable around x, then f is of class D' around x.

Proof. For every r > df(x,v) one can find s > 0 such that r > s~ ![f(x +sv) —
f(x)]. Thus for (x',v') close enough to (x,v) one has r > s~ [f(x' +sv) — f(x)] >
df(x',v'), so that

df(x,v) > limsup df(x',V').
(' V)= (x,v)

Since df (x',v') > —df(x',—V), the linearity of d f(x,-) implies that

liminf df(x',v') > — limsup df(x',—V)> —df(x,—v)=df(x,v).
(' V)= (x,v) o )= (x,v)

These inequalities prove our continuity assertion. Hadamard differentiability ensues
(and can be deduced from the local Lipschitz property of f). a

In the next statement the continuity of the derivative of f is strengthened, and for
asubset A of X* and r € P, we use the notation B(A,r) := {x* : d(x*,A) < r}.

Proposition 3.32. Let f: W — R be a convex function on some open convex subset
W of a normed space X. If f is Fréchet differentiable at some x € W and Gdateaux
differentiable on W, then its derivative is continuous at x.

More generally, if f is Fréchet differentiable at some x € W, then its sub-
differential df is continuous at x: for all € > 0, there exists 1 > 0 such that
df(w)NB(Df(x),e) # & and d f(w) C B(Df(x),€) forall w € B(x,n).

Proof. Tt suffices to prove the second assertion. The differentiability of f at X entails
continuity of f on W, hence that d f(w) # @ for all w € W. Let x* := Df(x). Given
€€ (0,d(x,X\W)), o € (0,¢€), let & > 0 be such that

Vu € B(0,0), Flxtu)— fx) = @ u) < olul. (3.6)
Letc:= e ' €(0,1). Forall w € B(x, (1 —¢)8), w* € df(w), v € X one has
JwW)=fw+v)+ (W) <0

Setting u :=w—x+vin (3.6) with v € B(0,¢6), one has u € B(0,0), x+u=w+v,
and adding the respective sides of the preceding inequalities, one gets

Fw) = f0) = (&) + (W) < ot ful].
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Using the relation (x*,u —v) = (x*,w —x) < f(w) — f(x), this inequality yields
W' =x"v) < offul| < 8.

Taking the supremum over v € B(0,c§), one gets [|[w* —x*|| < c ' =&. O

Corollary 3.33. A Fréchet differentiable convex function on an open convex subset
of a normed space is of class C'.

Let us give density and structure properties of the set of points of differentiability
of a convex function.

Theorem 3.34. (a) Let f: W — R be a continuous convex function on some open
convex subset W of a normed space X. Then the set F of points in W of Fréchet
differentiability of f is a (possibly empty) G5 subset of W.

(b) (Asplund, Lindenstrauss) If X is a Banach space whose dual is separable, then
F is densein W.

(c) (Mazur) If X is separable, the set H of Hadamard differentiability of f is also a
Y5 subset. If X is separable and complete, then H is dense in W.

Proof. (a) For u € Sy, let 0,(+,u) be the function of relation (3.5), and let

1
Gy = {er:3t>O: supcx(t,u)<—}.
n

ueSy

Since for all u € Sy the function 7 — 0y (¢, u) is nondecreasing, the same is true for
Ty 1+ sup{ ox(r,u) : u € Sx }. Thus by Proposition 3.30, F = N,G,, and it suffices
to prove that G, is open for every n € N\ {0}. Now, if x € G, and if r > 0 is the
radius of a ball with center x in W on which f is Lipschitzian with rate x, we can
pick ¢ € (0,7) such that 7,(r) < 1/n. Since |7,(t) — 7, ()| < 4t 'ic||x — w]|, we have
T,,(t) < 1/n for ||x — w|| small enough: G, contains an open ball with center x.

(b) For the proof we refer to [20, 668], and [98, Theorem 4.17], [376, Theo-
rem 8.21].

(c) Let us pick a countable dense subset {u,, : m € N} of Sx and observe that
u +— 0,,(t,u) is Lipschitzian on Sy, uniformly for w in a small ball with center x if
¢t > 0 is small enough. Thus the set H of Gateaux (or Hadamard) differentiability of
fis Ny uHpy n, where

Hyp:={xeW:3t>0:|f(x+tun) + f(x—tun) — 2f(x)| < t/n},

and this set is again open. It is dense in W because for all given X € W and
€ > 0 the one-variable function f,, : r — f (¥ +tu,,) is convex continuous on some
open interval containing 0, hence is differentiable at some point s € (—¢,¢€) by
Proposition 3.16, so that X + su,, € Hy,, N B(X,€) by Proposition 3.30. When X is
complete, W is a Baire space (Lemma 1.26), so that H = N, ,H,, , is dense. O
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Exercises

1. (a) Let f : R — R be given by f(x) = |x|. Show that df(0) = [—1,1].

(b) Check that the subdifferential at O of a sublinear function f on a normed space
X is given by df(0) = {x* € X* : x* < f}. Prove that df(x) = {x* € X* : x* <
f,*,x) = f(x)} forx € X.

2. For aconvex function f on R continuous at x show that d f (x) = [Df (x), D, f (x)].

3. Prove that the closure of the radial tangent cone at x € C to a convex subset of a
normed space coincides with the tangent cone to C as defined in Chap. 2.

4. Prove that the normal cone N(C,x) to a convex subset C of a normed space
coincides with the normal cone to C as defined in Chap. 2.

5. (Ubiquitous convex sets) Exhibit a proper convex subset C of a Banach space
X such that T(C,x) = X for some X € Bdry C. Show that X must be infinite-
dimensional. [Hint: Take for X a separable Hilbert space with Hilbertian basis (e, )
and set C:= {x = Z,x"¢, : |¥"| < 27" Vn},x=0.]

6. Let f: R? — R, be given by f(x,x) := max(|x;[,1 — /x2) for (x1,x2) €
R x Ry, 4o otherwise. Prove that f is convex but that domd f is not convex.

7. Let X be a Hilbert space, let C be a nonempty closed convex subset of X, and
let f: X — R be given by f(x) := (1/2)[||x||* = ||x — P(x)||*], where P is the metric
projection of X onto C: P(x) := {u}, where u € C, ||x — u|| = d(x,C). Show that f
is convex and that f is everywhere Fréchet differentiable, with gradient given by
V f(x) = P(x) for all x € X. [Hint: Note that f(x) = sup{(x,y) — (1/2) |ly|*:y €C}.
i.e., f is the conjugate of (1/2) [|-|*+1¢(-); use the estimates ||x+ u — P(x 4 u)||* <
|x+u—P(x)|]* and [x — P(x)||* < ||x — P(x+u)||* to prove that f is differentiable
at x.]

3.3 Calculus Rules for Subdifferentials

Convex functions enjoy several subdifferential calculus rules that are akin to the
usual rules of differential calculus. Nonetheless, there are some differences: in many
cases a technical assumption is needed to get the interesting inclusion. Moreover,
one does not have d(—f)(x) = —d f(x) in general. On the other hand, some rules of
convex analysis have no analogues in the differentiable case. An example of these
new rules is the following obvious observation.

Lemma 3.35. Suppose f < g and f(x) = g(X) for somex € X. Then d f(x) C dg(X).

This observation easily yields the following (rather inessential) rule for infima.
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Lemma 3.36. Let (fi)ic; be a finite family of functions and let X € (;c;dom f;. If
fi=infic; f; and if fi(X) = f(X) foralli € I, then d f (%) = N;c; 9.fi (%)

Proof. The inclusion d f(X) C N;¢; 9/i(X) stems from the preceding lemma. For the
opposite inclusion, we note that for all ¥* € (;¢; dfi(%), for all i € 1, and for every
x € X one has fj(xX) + (x*,x —X) < fi(x), hence f(X)+ (¥*,x—X) < f(x) by our
assumption. O

When the space of parameters is a normed space, a different formulation can be
given. It is useful for duality theory.

Proposition 3.37. Let f: W x X — R, where W and X are normed spaces. Let p
be the performance function given by p(w) :=inf{f(w,x) :x € X} and let S : W = X
be the solution multimap given by S(w) := {x € X : f(w,x) = p(w)}. Suppose that
for some w € X one has S(W) # @. Then one has the equivalence

w'edpw) = VxeSWw) W.0)edf(wx)

<~ dxeS(w) W",0)ecdf(wx).

Proof. For all X € S(w), (w,x) € W x X, one has f(w,X) =
whence

(W), f(w,x) = p(w),

=

wedpw)<=YweW, pw) >pWw) +W,w—w)
= V(wx) eWxX, f(wx)>f(wx)+(Ww,0),(w—wx—X)),

or (W*,0) € df(w,x). Conversely, if this last relation holds for some X € S(w) and
some W* € W*, then taking the infimum over x € X in the last inequality, one gets

ie., w* € dp(w). O

The case of the supremum of a finite family of convex functions is more likely
to occur than the case of the infimum. In the next supplement, a generalization to an
arbitrary family is studied.

Proposition 3.38. Let (f;)ic; be a finite family of convex functions on a normed
space X and let f := sup;.; fi. Let X € (;e;dom fi and let [(X) :={i €I : fi(X) =
f(x)}. Suppose that for all i € I the function f; is continuous at X. Then one has

f'(x,) = max f; (x,-), 3.7
i€l(x)
8f()‘c)=co( U 8ﬁ()‘c)). (3.8)
i€l(x)

Proof. Let u € X. Since f is continuous at X, we have f'(x,u) = d,f(x,u), and a
similar equality for f;. Fori € I(X), since f; < f and f;(X) = (), we have f/(x,u) <
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f'(X,u). Thus s := maxe;(x) f; (%,u) < f'(%,u) and equality holds when s = +-oo. Let
us suppose that s < +oo and let us show that for every r > s we have r > f'(x,u);
that will prove that s = f'(x,u). For i € I(x), let ; > 0 be such that

(1/0) (fi(x+tu) — fi(x)) <r fort e (0,4).

Since for j € J(X) :=1 \ I(X), the function f; is continuous at X, given € > 0 such
that f;(¥) +¢& < f(x) for all j € J(X), we can find ¢; > O such that

fiG+tu) < f(xX)—e  fort e (0,z).
Then for ¢ € (0,19), with 7o := min(|r| ™' €,min ;) 1;), we have —e < tr; hence

(1) = max i 4-1) < max(max ((5) +17). £ (5) — ) = F(5) 417

Thus f'(%,u) < rand f'(¥,u) = max;c/s) fi (%, u).

For i € I(X), the inclusion df;(X) C df(x) follows from Lemma 3.35 or from
the inequality f/(X,-) < f’(%,-). Denoting by C the right-hand side of (3.8), and
observing that d f(X) is convex, the inclusion C C df(X) ensues. Let us show that
assuming that there exists some w* € df(x) \ C leads to a contradiction. Since C
is weak™ closed (in fact weak™ compact), the Hahn—-Banach theorem yields some
c € R and u € X (the dual of X* endowed with the weak™ topology in view of
Proposition 1.4) such that

(W' u) >c> (x*u) Vx"eC.
Since f'(xX,u) > (W*,u), we get

f/(®u)>c>sup{x*,u)y=sup sup (x*,u)= sup f/(x,u),
x*eC icl(x)x*€dfi(x) icl(x)

a contradiction to the equality we established. a
Now let us give a classical and convenient sum rule.

Theorem 3.39. Let f and g be convex functions on a normed space X. If f and g
are finite at X and if f is continuous at some point of dom f Ndomg, then

I(f+8)(x) = f () + 9g(x).

Proof. The inclusion df(¥) 4+ dg(X) C d(f + g)(¥) is an immediate consequence
of the definition of the subdifferential. Let us prove the reverse inclusion under
the assumptions of the theorem. Let ¥* € J(f + g)(¥). Replacing f and g by the
functions fy and go given respectively by
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we may suppose X = 0, X" = 0, f(x) = g(¥) = 0. Then we have f(x)+ g(x) > 0 for
every x € X and f(0) =0 = g(0). The interior C of the epigraph E of f is nonempty
and contained in the strict epigraph of f, hence is disjoint from the hypograph

H:={(x,s) eXxR:s<—g(x)}
of —g. Let (u*,c) € (X xR)*\ {(0,0)}, which separates C and H:
(W'swy+cer>0> (' ,x)+ecs  VY(wr)eC,V(x,s) €H

(we use the fact that 0 € cI(C) N H). Let u be a point of dom g at which f is finite and
continuous. Taking w = x = u and r € (f(u),+-eo) large enough, we see that ¢ > 0.
If we had ¢ = 0, taking (x,s) = (u,—g(u)), we would have (u*,w) > (u*,u) for all
w in a neighborhood of u, an impossibility. Thus ¢ > 0. Since E C cl(C) we get

r>(—clut,w) Y(w,r) €E, g(x)>(c 'u*,x) Vx €domg,

and since f(0) =0, g(0) =0, we get x* := —c'u* € df(0), —x* € dg(0). O
We deduce a chain rule from the sum rule, although a direct proof can be given.

Theorem 3.40 (Chain rule). Let X and Y be normed spaces, let A: X —Y be a
linear continuous map, and let g : Y — R.. be finite at y := A(X) and continuous at
some point of A(X). Then for f := goA one has

df(x) =AT(dg(y)) := dg(y) o A.

Proof. The inclusion dg(¥) oA C df(X) is immediate, without any assumption on
g. Let us first observe that the reverse inclusion is valid without any assumption
in the case X := W x Y, ¥:= (W,y) and A is the projection py : (w,y) — y: then
fw,y) =g(y), and for every ¥* := (W*,7*) € df(X) one must have w* =0, y* €
dg(9), as is easily checked by observing that

W w—w) < fw,y)—f(W,y) =0 YweWw,
L y=3 < fwy)—f(w,y) =gly)—g() Vyer.

This special case will be used later, and we return now to the general case.
Let 15 be the indicator function of the graph G of A and let & := g o py. Then

f(x) =inf{g(y) +16(x,y) : y € Y} = inf{h(x,y) + 16(x,y) : y €Y}
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and f(X) = k(x,y), where k is the function (x,y) — h(x,y) + 1G(x,y). Given X* €
df(x), Proposition 3.37 ensures that (¥*,0) is in the subdifferential of k at (%,7).
Since £ is finite and continuous at some point of the domain of 15, Theorem 3.39
and the preceding special case yield some ¥* € dg(¥), (#*,7*) € dig(X,¥) such that

(2*70) = (Ouy*) + (ﬁ*vv*)'

Since (#*,v*) € N(G, (x,y)) or u* = —v* oA, as is easily checked, we have X* =
u'=—-7"0A=y"0A. a

In Banach spaces, one can get rid of the continuity assumptions in the preceding
two rules, replacing them by some qualification condition. These results can be
obtained through duality and use of the Robinson—Ursescu theorem, as will be
shown later.

3.3.1 Supplement: Subdifferentials of Marginal
Convex Functions

A generalization of the rule for the subdifferential of the supremum of a finite family
of convex functions can be given. Let X be a normed space, let (fs)ses be a family
of convex functions f; : X — R parameterized by a set S, and let f := sup, g fs.
Suppose f(x) > —oo forall x € X. GivenX,x € f(R), € € R, we set

S(x,e):={seS: fi(x) > f(x)— ¢}, S(e) :=S(x,¢€).

In general, the set S(0) may be empty, so that one has to use the nonempty sets S(€)
for € € P := (0,+c0). The family .# := {S(€) : € € P} is a filter base (called the
maximizing filter base of s — f;(x)). This means that for all M, M’ € .# one can find
M" € ./ such that M C MNM'; in fact, for €, € P one has S(e) N S(e’) = S(e”)
for €” := min(e, €’). Since the family .4 (X) of neighborhoods of X is a filter base
too, the family .#Z x A (X) :={S(e) xV :S(e) € 4, V € A (X)} also is a filter

base. Given a function g : § x X — R, we set

limsup g(s,x) := inf sup g(s,x) =inf inf sup sup g(s,x)
M N () MxVed x N () (s,x)EMXV 8>OP>OXEB(X7P)SES(£)

= inf sup g(s,x),
€05 v)eS(e) xB(x.€)

since we can replace € and p with min(g,p). In the following proposition, given
u € X, we take g(s,x) := fy(x,u) :=1lim,_o, (1/1)(fs(x+1u) — fs(x)), changing the
notation for the radial derivative for the sake of simplicity.

Recall that 6" (A) denotes the weak™ closed convex hull of a subset A of X*.
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Proposition 3.41 (Valadier). Let f :=sup,g f5, as above. Forx € dom f andu € X
such that f'(X,u) < +eo one has

f (% u) < limsup fI(x,u) = inf sup Fi(x,u). (3.9)
XN (%) €>0(5 x)eS(e) xB(x.€)

If x € core(dom f) and if for some € > 0 and all s € S(€), the functions f; are
continuous at X, one has

df(x)C ()Ce,  where Ce :=70" U dfs(x) | . (3.10)
£>0 (s,x)€S(€) X B(%,€)

If, moreover, f is continuous at X, (3.9) and (3.10) are equalities.

Proof. Since for all V € 4 (X) we have X+ tu € V for t > 0 small enough, to prove
(3.9) it suffices to show that

f'(®u) <infinf sup f/(X+tu,u). (3.11)

t>0 8>OSES(8)
This inequality being obvious when f’(X,u) = —oo, we may suppose f’(¥,u) € R.
We have to prove that for every o > 0 and every #, € > 0 there exists s € S(€) such

that f](X+ru,u) > f'(¥,u) — c. Since S(-) and t — fI(X+tu,u) are nondecreasing,
we may suppose € < o, 1 < 1/4 and

1
> (f(x42tu) — f(x) < f'(%,u) + €. (3.12)
Then we pick s € S(X+ru, €t), i.e., s € S such that

fs(F+tu)> f(X+r1u)—et > f(X+1tu) — ot. (3.13)

Since f(x + tu) > f(X) + tf'(x,u), we have fi(x+tu) > f(x) +tf'(x,u) — €t.
Moreover, relation (3.12) ensures that

fi(@+2tu) < f(x+2tu) < f(%) +2tf (X,u) + 2te,
whence by the convexity relation f;(X) > 2f(X+tu) — fo(x+ 2tu) and t < 1/4,
fi3) Z2(f @) +1f (Fou) —et) = (F(%) + 201" (%,u) + 2¢1) > f(%) —det > f(3) — &,
i.e., s € S(€). By the inequalities used for Lemma 3.15 and relation (3.13) we get

&G +1u) — f3(%) > FG+mu)—oar— f(x)

fl(x+tu,u) > . ;

> f'(xu) — o.

That proves (3.11) and (3.9).
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In order to prove inclusion (3.10) under the additional assumption, let us show
that if x* ¢ Ce for some & > 0, then X* ¢ df(x). Since Co, C Cp for o < 3, we
may suppose € < €, so that f; is continuous at X for all s € S(&). The Hahn—Banach
theorem yields some u € X \ {0} such that

(x*,u) > sup {(x"u): X" €dfs(x)} = sup fi(x,u).
(s,x)eS(e)xB(%,€) (s.x)€S(e) xB(x,€)

Then since f/(X,u) < 4o, because x € core(dom f), inequality (3.9) yields (x*,u) >
f'(x,u) and x* ¢ 9 f(X).

Now let us show that when f is continuous at X, given u € X, we have

f'(x,u) > limsup fi(x,u):=inf inf sup sup fi(x,u).
XN (F) €>0p>0ep(x p) ses(e)

Given o > 0, let us find some &, p > 0 such that

f(®u)+o> sup sup fi(x,u). (3.14)
XEB(X,p) s€S(e)

Letm>0andletV € .4 (x) be open and such that f(x) <mforallx € V.Lett >0
be such that x; :=x+ru €V and

()~ ) < £ () + 5

Let B :=ra /4. Since f is continuous at x;, there exists a neighborhood V; of x;
contained in V such that f is bounded above by f(x;) +  on V;. Let us pick € €
(0,B) and r > 0 such that r(m — f(X) + &) < B — €. Let us show that for all x €
x—r(V—%) €N (X),s e S(e), we have

fs(x) > f(x) - B. (3.15)

Lety € V be such that x = ¥ — r(y — %), so that ¥ = (1 +7r) " 'x 4 r(1 +r)~'y. Thus
we have f;(y) <mand f;(%) < (1 +7)"" fo(x) +r(1+7)" £i(y), and hence

[i) = (M40 fx) = rfs(v) 2 (14 1)(f(x) —&) —rm > f(X) = B.

Now let us pick p > 0 such that B(x;,p) C V; and B(0,p) C r(V —X). For s € S(¢)
and x € B(x,p) we have x € X — r(V —X), and hence f;(x) > f(%) — B by (3.15) and

x+tu=x+1u+ (x—Xx) € B(x;,p) CV,, so that fy(x+tu) < f(x;) + B. Therefore

Fll) < 7 (ot ) = i) <
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Thus (3.14) is established, and since o is arbitrarily small, we get equality in
relation (3.9). The bijection between closed convex sets and support functions being
a lattice isomorphism, equality in (3.10) ensues. O

The preceding result can be simplified if one uses compactness assumptions.

Proposition 3.42 (Rockafellar). Let S be a compact topological space, let (fs)ses
be a family of convex functions on some convex open subset U of a normed space X,
let f :=sup,cg fs, and let X € dom f. Suppose that for some neighborhoodV of X in
U the following assumptions are satisfied:

(a) Forall x € V the function s — f(x) is upper semicontinuous and finite
(b) Foralls €S, fs is upper semicontinuous at x

Then S(X) :={s € S: fs(X) = f(X)} is nonempty, and for all u € X one has

£ (x%,u) = max fl(x,u), (3.16)
s€S(x)
af(x) =co"( |J af(x)). (3.17)
s€S(X)

Proof. Assumption (a) ensures that S(X) = Ng>0S(€) is nonempty and compact.
Moreover, given u € X and s € S(X), since f] (X,u) = inf~o(1/1)(fs(X+1u) — f(X)),
the function s — f](X,u) is upper semicontinuous, and we can write max instead of
sup in relation (3.16). Let us prove relation (3.16). For all s € S(%), since f; < f and
fs(x) = f(x), we have fI(x,u) < f'(x,u), hence

max{f,(X,u):s € S(X)} < f'(x,u).

Let us prove the reverse inequality. Let r < f’(x,u). Lett, > 0 be such thatx+ru eV
forall ¢ € [0,1,]. For every ¢ € (0,1,], the set

Su(t):={seS: f(F+tu)> f(X)+rt}

is nonempty, since (1/7)(f(X+1u)— f (X)) > f'(*,u) > r. By (a), S,(¢) is closed. The
convexity of f; ensures that for ¢ € (0,,], 6 € (0,1), 7" = 61, one has S, (') C S,(t),
since for s € S, (¢") one has f(x) > f;(x), hence

0fx+tu)+ (1—0)f(x) > fo(x+ 0ru) > f(x)+ Ort

and fy(x+tu) > f(x) + rt after simplification. Thus NS, () is nonempty. Let 5 €
NS, (t). Since f5 is upper semicontinuous at X, a passage to the limit in the definition
of S, (¢) shows that f5(X) > f(X), i.e., 5 € S(X). Then since f5(X) = f(X) and 5 € S,,(¢)
for all + € (0,2,], one gets (1/t)(fs(X+tu) — f5(X)) > r, hence fi(X,u) > r. Thus
relation (3.16) holds.

Let C be the right-hand side of relation (3.17). For all s € S(X) the inequalities
fi(x,") < f'(x,-) entail the inclusion dfs(X) C df(x), hence C C df(X). Now for
every X* € X*\ C one can find some u € X \ {0} such that
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(x*,u) > sup (x*,u) > sup sup (x*,u) = sup fi(x,u)=f(%u),
veC SE€S(X) X €9 f3(%) seS(®)

fs being continuous at X. Thus ¥* ¢ df(¥) and (3.17) holds.

Exercises

1. Let f, g be two convex functions on a normed space X that are finite at some X €
X. Suppose g is Fréchet differentiable at X. Then show that d(f + ¢)(X) = df (%) +

g'()-

2. Let f be a convex function on a normed space X that is finite at some X € X.
Suppose there exists some ¢ € X* such that r defined by r(x) := max(f (X +x) —
f(x) —£(x),0) is a remainder. Show that f is Fréchet differentiable at X.

3. Recall Proposition 3.29: if a convex function f on a normed space X is finite
at x € X then f is subdifferentiable at x iff it is calm at x iff there exists ¢ > 0
such that f(w) > f(x) — c||w —x]| for all w € X. Show that in such a case one has
df(x) NeBx+ # & but that one may have d f(x) Z ¢Bx-.

4. Without compactness of some S(x, €), relation (3.17) may not hold, even when
S(x) is nonempty or even when S(x) = S. Check that it fails for S := (1,2], X :=R,
f5(x) := |x|*, so that f(x) = |x| for x € [—1,1].

5. Prove that a differentiable function f : W — R defined on an open convex subset
of a normed space X is convex if and only if /' : W — X* is monotone, i.c., satisfies
(f'(w) = f'(x),w—x) >0 forall w,x € W.

6. Show that for a convex function f : X — R.. on a normed space X, the multimap
df : X = X* is monotone, i.c., satisfies (w* —x*, w—x) >0 forall w, x € X, w* €

df(w), x* € df(x).

3.4 The Legendre-Fenchel Transform and Its Uses

There are several instances in mathematics in which a duality can be used to
transform a given problem into an associated one called the dual problem. The
dual problem may appear to be more tractable and may yield useful information
about the original problem and even help to solve it entirely. For optimization
problems, the Legendre—Fenchel conjugacy is certainly the most useful duality. It is
intimately linked with the calculus of subdifferentials; for this reason, the study of
this transform is fully justified here.
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3.4.1 The Legendre-Fenchel Transform

Given a normed space X in duality with its topological dual X* through the usual
pairing (-,-) and a function f : X — R, the knowledge of the performance function
Se(x¥) :==inf (f(x) — (x*,x)) (3.18)

xeX
associated with the natural perturbation of f by continuous linear forms is likely to
give precious information about f, at least when f is closed proper convex. Since f
is concave (it is called the concave conjugate of f) and upper semicontinuous, one

usually prefers to deal with the convex conjugate or Legendre—Fenchel conjugate
(or simply Fenchel conjugate) f* of f given by f* = — fi:

S = sup({(x*,x) — f(x)). (3.19)
xeX
We note that whenever the domain of f is nonempty, f* takes its values in R :=
R U {+e}. We also observe that f/* is convex and lower semicontinuous for the
weak™ topology on X* as a supremum of continuous affine functions. Notice that
we could replace X* with another space Y in duality with X.
The computation of conjugates is eased by the calculus rules we give below. The
following examples illustrate the interest of this transformation.

Examples. (a) Let f be the indicator function 1¢ of some subset C of X. Then f™* is
the support function he or o¢ of C given by he(x*) := o¢(x*) 1= sup,co{(x*,x).

(b) Let g : X* — R., be the support function of S C X. Then h§ = 1c, where C :=
clco(S) is the closed convex hull of S.

(c) If f is linear and continuous, then f* is the indicator function of {f}.

(d) For X =R, f = L |-[” with p € (1,%) one has f* = 1 |-|? with g := (1 - ).
(e) If f = |||, then f* = 1+, the indicator function of the closed unit ball B* of X*.
(f) More generally, if f is positively homogeneous and f(0) = 0, then f* is the
indicator function of d f(0).

Other examples are proposed in exercises. Examples (e), (f) point out a connec-
tion between subdifferentials and conjugates; we will consider this question with
more generality later on. Examples (a) and (b) illustrate the close relationships
between functions and sets; these links are of great importance for this book. Let us
point out the potential generality of Example (a), which shows that the computation
of conjugate functions can be reduced to the calculus of support functions: for every
function f : X — R with epigraph E;, the value at x* of f* satisfies the relation

fr(&x) = og,(x",—1), (3.20)

as an immediate interpretation of the definition shows (see also Exercise 1 below).
The Fenchel transform enjoys nice properties. We leave their easy proofs as
exercises.
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Proposition 3.43. The Fenchel transform satisfies the following properties:

It is antitone: for every pair of functions f,g with f < g one has f* > g*.
For every function f andc € R, (f+c¢)* = f*—¢;

For every function f and ¢ > 0, (cf)*(x*) = cf* (¢~ 'x*) for all x* € X*;
For every function f and ¢ > 0, if g := f(c-), then g* = f*(c™!-);

For every function f and L € X*, (f +£)* = f*(-—0);

For every function f andx € X, (f(-+X))* = f* — (-, %).

For every pair of functions f, g one has (f0g)* = f* + g*, where the infimal
convolution f g is defined by (f0g)(x) := inf,, f(x —w) + g(w).

Let us examine whether f* enables one to recover f. For this purpose, we
introduce the biconjugate of f as the function f** := (f*)*. Here we use the same
symbol for the conjugate g* of a function g on X*:

g'(x) == sup ((x,x) —g(x")).
xFEX*
In doing so we commit some abuse of notation, since in fact we consider the
restriction of g* to X C X™*. However, the notation is compatible with the choice
of the pairing between X and X*. In fact, our study could be cast in the framework
of topological vector spaces X, Y in separated duality; taking for ¥ the dual of X
endowed with the weak™ topology, one would get X as the dual of Y.

Theorem 3.44. For every function f : X — R one has f** < f. If f is closed proper
convex (or if f = 40X or f = —oX, the constant functions with values 4+ and —oo
respectively) then f** = f.

Proof. Given x € X, for every function f : X — R and every x* € X* we have
— £ (") < f(x) — (*,x) hence £**(x) = sup{ (x',x) — f*(x") : ¥* € X"} < f(x).
Let us suppose f is closed proper convex. For every w € X and r < f(w) we can
find x* € X* and ¢ € R such that r < (x*,w) — ¢, (x*,x) —c < f(x) for all x € X.
Then we have f*(x*) < ¢, hence f**(w) > (x*,w) — ¢ > r. Therefore f** > f, hence
f** = f. The cases of the constant functions —eoX, 400X with values —oo and +oo

respectively are immediate. a

Corollary 3.45. For every function f : X — R bounded below by a continuous
affine function and with nonempty domain, the greatest closed proper convex
function on X bounded above by f is is not bounded below by a
continuous affine function, then f** = —ooX.

Proof. The last assertion is obvious, since f* = +o0oX" when f is not bounded
below by a continuous affine function (since f*(w*) < ¢ for some w* € X*, c € R
implies that f(x) > (w*,x) — ¢ for all x € X). If g is a closed proper convex functlon
satisfying g < f, we have g* > f*, since the Fenchel transform is antitone; then
g =g"* < f**. Thus when f # 4% and f is bounded below by a continuous affine
function, f** is proper and clearly lower semicontinuous and convex, hence closed
proper convex, and f** is the greatest such function bounded above by f. a
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Corollary 3.46. For every function f : X — R one has f*** = f*.

Proof. The result is obvious if f* = +ooX" orif f* = —eoX"; otherwise, f* is closed
proper convex. O

A crucial relationship between the Fenchel conjugate and the Moreau—Rockafellar
subdifferential is given by the Young—Fenchel relation that follows.

Theorem 3.47 (Young—Fenchel). For every function f : X — R and for every x €
X, x* € X* one has f(x) + f*(x*) > (x*,x).

When f(x) € R equality holds if and only if x* € df(x). Moreover, x* € d f(x)
implies x € d f*(x*).

Proof. The first assertion is a direct consequence of the definition. When f(x) € R,
the equality f(x) + f*(x*) = (x*,x) is equivalent to each of the following assertions:

fE)+ () < &),
f)=fw)+&5w) < (o) Vwel,

x*€df(x).
Moreover, they imply the inequality f**(x) + f*(x*) < (x*,x), equivalent to x €
af*(x*). O
Theorem 3.48. For every function f : X — R one has f*(x) = f(x) whenever
df(x) # 2.

Moreover, when f**(x) = f(x) € R, one has df(x) = df**(x) and x* € df(x) if
and only if x € d f*(x*).

Proof. Given x* € df(x), let g: w+ (x*,w—x) + f(x). Then g is a continuous
affine function satisfying g < f, so that g < f** and g(x) = f(x) > f**(x), so that
f(x) = f(x) and x* € Jf*™(x). Moreover, when f**(x) = f(x) € R, the reverse
inclusion d f**(x) C d f(x) follows from the relations f** < f, f**(x) = f(x). O

Corollary 3.49. When f = f** the multimap d f* is the inverse of the multimap d f:

x"edf(x) e xedf(x%).

The following special case is of great importance for dual problems.

Corollary 3.50. When f**(0) = f(0) € R the set of minimizers of f* is d.f(0).
For every function g with finite infimum, the set dg*(0) is the set of minimizers of g**.
When f** = f and f*(0) is finite, the set d f*(0) is the set of minimizers of f.

Proof. The first assertion follows from the equivalences x* € d f(0) < 0 € d f* (x¥)
< x* is a minimizer of f*. The second one ensues because g*(0) = —infg(X) and

g™ = g*. Taking g := f, one gets the last assertion. a
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Exercises

1. Check that for every function f : X — R with nonempty domain, the support
function of the epigraph Ey of f satisfies hg, (x*,—1) = f*(x") and

he, (x",r) = —rf*(—r'x*) forr<o0,

th (-X* ) 0) = thmf(X*)a

hg,(x",r) = +e  forr>0.

2. Show that for every function f : X — R, the greatest lower semicontinuous
convex function bounded above by f is either f** or the valley function vc
associated with the closed convex hull C of dom f, given by v¢(x) = —eo if x € C,
ve(x) = Feoifx ¢ C.

3. If X is a normed space and f = go ||-||, where g : R4 — R., is extended by +oo
on R_, show that f* = g*o |||, where ||-||, is the dual norm of ||-||.

4. For X =R and f(x) = expx, check that f*(y) = ylogy —y fory > 0, f*(0) =0,
F(3) = o fory < 0.

5. Let f: R — R., be given by f(x) := —Inx for x € P, f(x) := 4o forx € R_.
Check that f*(x*) = —In|x*| — 1 for x* € =P, f(x) := +oo forx € Ry.

6. Let f: X— R and let g be the convex hull of f. Show that g* = f*.

7. Let f: X— R and let & be the lower semicontinuous hull of f. Show that
h = f*.

3.4.2 The Interplay Between a Function and Its Conjugate

Let us give examples of the information one can draw from the study of the
conjugate function.

We first study the transfer to f* of growth properties of an arbitrary function f.
In order to obtain symmetry in the properties below, we assume that we have two
normed spaces X,Y in metric duality, i.e., that there exists a continuous bilinear
coupling ¢ := (-,-) : X x ¥ — R such that ||y|| = sup{{x,y) :x € Bx} forally €Y
and ||x|| = sup{(x,y) : y € By} for all x € X. Such is the case when Y is the dual of
X or when X is the dual of Y.

Lemma 3.51. Let f: X — R. be proper and let r,c € Ry, a,b € R.
(a) If f is such that f > a on rBx and f(-) > c||-|| — b on X \ rBx, then fory € cBy
one has f*(y) < r||y|| — min(a,cr — b).
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(b) If f is supercoercive in the sense that oy := liminfy .. f(x)/|x[| > 0 and
if f is bounded below on bounded sets, then for all ¢ € (0,0f), f* is bounded above
on cBy.

(c) If f* is bounded above by b on ¢By, then f(-) > c||-|| —b on X.

(d) f is bounded below on bounded sets and f is hypercoercive in the sense that
F(x)/|x]| = 4o as ||x|| = +oe if and only if f* is bounded above on bounded sets.

Proof. (a) Fory € cBy, setting s := ||x||, one has

fT(y) <max(sup ({v,x) —a), sup ((y,x) —cllx]|+b))

xErBy xeX\rBx

< max(r ] = a,sups( ] = ) +b) = ]| + max(~a.b— ).
s>r

(b) For all ¢ € (0,0t¢) one can find r > 0 such that f(x)/|x|| > ¢ for all x € X \
rBx. Setting b = 0 and a := inf f(rBx) in (a), one gets /*(-) < r||-|| — min(a,cr) <
max(cr — a,0) on cBy.

(c) If f* < b on cBy, then for all x € X one has f(x) > f**(x) > supyc.p, ((v,X) —
b) =c||x|| —b.

(d) When f is hypercoercive, i.e., when ¢ty = +oo, and f is bounded below on
bounded sets, assertion (b) ensures that for all c € R, f* is bounded above on c¢By.
The converse follows from (c). a

For a closed proper convex function, the relationships between growth properties
of f and boundedness properties of f* are more striking.

Proposition 3.52. Let X be a normed space, let f: X — Rw be closed convex
proper; and let c € Ry, a,b € R. Then the following assertions are equivalent:

(a) [ is supercoercive: o := liminf), .. f(x)/[lx]| >0
(b) There exist b € R, ¢ € P such that f > c||-|| — b

(¢c) fis coercive in the sense that f(x) — +eo as ||x|| — oo
(d) The sublevel sets of f are bounded

(e) f* is bounded above on a neighborhood of 0

(f) 0 € int(dom(f*))

Proof. (a)=-(b) Since f is bounded below by a continuous affine function, it is
bounded below on balls. Given ¢ € (0, 0,r), we can find r > 0 such that f(-) > c||-||
on X \ rBx and a € R such that f(-) > a on rBx. Taking b := (cr —a)* :=
max(cr — a,0), we get f(-) > c||-|| —b on rBx and X \ rBx hence on X.

(b)=(c) is obvious and (c)<(d) is easy.

(d)=(a) Suppose a; < 0. Given a sequence (g,) — 0 in (0,1), one can find
Xn € X such that ||x,|| > n/g, and f(x,) < & ||xa]|. Let t, := 1/(& ||x,]]) < 1/n.
Then, given w € domf, for u, := (1 —t,)w + t,x,, one has

flun) < (1=t fW) + 10 f (n) < |f (W) +1,
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but (u,) is unbounded, since ||up| > ty|lxn| — (1 —tn) ||W|]| > 1/&, — ||w]|, a
contradiction to (d).
(b)<(e) has been proved in the preceding lemma and (e)=>(f) is obvious.
(f)=-(e) is a consequence of Proposition 3.4, since f* is convex and lower
semicontinuous and Y := X* is complete. O

Now let us point out relationships between rotundity properties of f and
smoothness of f*. A function f : X — R.. is said to be strictly convex, respectively
uniformly convex with constant ¢ > 0, if for every distinct xp,x; € X, ¢ € (0,1) one
has respectively

S =1)xo+tx1) < (1—1)f(x0) +1f(x1), (3.21)
F((U=1)x0+1x1) < (1 =1)f(x0) + 1 (x1) = ct(1 = 1) [l xo—x1]|. (3.22)

Theorem 3.53. Let f be a closed proper convex function finite and continuous at
X e X.If f* is strictly convex (resp. uniformly convex), then f is Hadamard (resp.
Fréchet) differentiable at X.

Proof. For x* € df(x) one has X € df*(x*) by Theorem 3.48, whence 0 € d(f* —
X)(x*) and X* is a minimizer of f* —X. When f* is strictly convex, f* — X is strictly
convex, too, and it has at most one minimizer. Thus d f(X) is a singleton and f is
Hadamard differentiable at X in view of Corollary 3.26. We leave the Fréchet case
as an exercise (see [61,984], where quantitative information is provided). O

Exercises

1. Let X be a Hilbert space with scalar product (- | -) and let A: X — X be a
symmetric, linear, continuous map such that the quadratic form g associated with
A is positive on X \ {0}. Let b € X and let f be given by f(x) = g(x) — (b ] x).

(a) Check that A and the square root A'/2 of A are injective and that their images
satisfy R(A) C R(A'/?).

(b) Using Theorem 3.40 and the relation ¢ = goA'/? for g := %HHZ, show that
() =3 H(Al/z)’l()c*)H2 for x* € R(A'/?), g*(x*) = +oo otherwise.

(¢) Check that if b € R(A), then f attains its minimum at A~ (b).

(d) Check that if b € R(A'/?)\ R(A), then f is bounded below but does not attain its
infimum.

() Check that if b ¢ R(A'/?), then inf,cy f(x) = —oo.

(f) Deduce from the preceding questions that when R(A) is closed, then R(A'/?) =
R(A). [Hint: When R(A) # X take b € X \ R(A) and pick some u € R(A)* such that
(b | u) > 0; then check that inf,~¢ f(ru) = —oo.]

2. (a) Show that if f is such that f > b and domf C rBy, then one has f*(-) <
rll-[[=b.
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(b)] Show that if f is such that f > b and f(-) > ¢||-|| on X \ rBx, then one has
¢Bx+ C dom f*.

3. Give an example of a coercive function that is not supercoercive.
4. Give an example of a supercoercive function that is not hypercoercive.

5. If f(x) = 5 [[x[|” with p € (1,e0), show that f*(x*) = 1 [|x*[| ¢ with g := (1—5) ",
where ||-||, is the dual norm. Observe that for p = 2 one has g = 2.

6. Let X be a Hilbert space identified with its dual. Show that f* = fiff f := 1 [B[&

7. (Legendre transform) Let f : X — R.. be a lower semicontinuous proper convex
function that is differentiable on its open domain W and such that its derivative
S’ W — X* realizes a bijection between W and W* := f/(W), with inverse h. Let
ff:W* — R be the Legendre transform of f: fL(w*) := (w* h(w*)) — f(h(w")).
Show that f~ coincides with the restriction to W* of the conjugate f* of f.

3.4.3 A Short Account of Convex Duality Theory

Let us give a short account of the usefulness of duality for solving optimization
problems. A general approach for dealing with the optimization problem

(2) minimize f(x), xeX,
where X is a set and f : X — R.,, consists in embedding it in a family of problems
(Py) minimize P, (x), xeX,

where w is an element of a normed space W and P,, := P(w,-) : X — R., is a family
of objective functions deduced from a perturbation function (or parameterization
function) P : W x X — R. in such a way that f = Fy. We associate to P the
performance function (or value function) p given by
= inf P .
p(w) = inf P(w,x), wew
The inequality p**(0) < p(0) gives an estimate of the value p(0) of (7). Since
p*(0) = sup{—p*(w*) : w* € W*}, this estimate involves the dual problem, which
is the maximization problem

(2) maximize —pr(w"), wheyY =Ww*

When X is a normed space, it can be expressed in terms of the perturbation function
P itself, since for all w* € W*,
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pr(w*) = sup ({w*,w) — in}EP(w,x))
wew xe
= sup  (((W",0),(w,x)) — P(w,x)) = P*(w",0).
(w,x)eW xX

One can put (2) in the form of the minimization of p*. This convex problem can be
called the adjoint problem, and when X is a normed space, it is expressed as

() minimize P*(w*,0), w ey :=w*.

When the value p**(0) of (2) coincides with the value p(0) of (£*), one says
that weak duality holds or that there is no duality gap. We know that p is convex
whenever P is convex. Its subdifferentiability at 0 yields the strong duality relation

inf (%) = —min (£77),

where min is taken in the usual sense that if inf (Z?*) is finite, then (£7*) has a
solution.

Proposition 3.54. Suppose the performance function p is convex and finite at 0.
Then there is no duality gap if and only if p is lower semicontinuous at 0.

Proof. Since p** < p and p** is lower semicontinuous, the equality p**(0) = p(0)
entails that p is lower semicontinuous at 0. Conversely, when p is convex, finite, and
lower semicontinuous at 0, its lower semicontinuous hull p satisfies p(0) = p(0).
Then since p is lower semicontinuous, convex, proper (since p(0) € R), one has
p*™* = P. In particular, one has p**(0) = p(0) = p(0). O

In the following proposition we do not require any convexity assumption, but we
use the Moreau—Rockafellar subdifferential of p given by

omrp(W) :=dp(W) :={w" e W*:Ywe W p(w) > p(w) + (W*,w—w)},

a stringent notion when p is nonconvex.

Proposition 3.55. If the Moreau—Rockafellar subdifferential dp(0) of p at O is
nonempty, then strong duality holds: one has inf(2?) = max(2), and (2) has
optimal solutions. More precisely, the set S* of solutions of (2) is dp(0).

Proof. Letw* € dp(0): for all w € W one has p(w) > p(0) + (w*,w). Thus —p(0) >
p*(w*); hence p(0) < —p*(W*) <sup,cpy+ —p*(W*) = p**(0), and W* is a solution
to (2), p(0) = p**(0). Conversely, if —p*(W*) = sup, .y« —p*(Ww*) = p(0), for all
w € W one has p(w) — (w*,w) > p(0). That means that w* € dp(0). O

Corollary 3.56. Suppose p is convex and inf(Z?) is finite. Suppose there exists
some X € X such that P(-,X) is finite and continuous at 0. More generally, denoting
by V the vector space generated by dom p, suppose there exist some r >0, m € R
and some map w — x(w) from B(0,r) NV to X such that P(w,x(w)) < m for all
w € B(0,r)NV. Then p |V is continuous, p is subdifferentiable at 0, and strong
duality holds.
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Proof. Under the general assumption, p is majorized on B(0,r) NV, since for
w € B(0,7)NV one has p(w) < P(w,x(w)) <m. Thus p | V is continuous, and by
Corollary 3.27, p is subdifferentiable at 0. O

The preceding corollary makes it possible to get the subdifferentiability rules
under continuity assumptions we have seen previously (exercise). We rather prove
new subdifferentiability rules under semicontinuity assumptions and algebraic
assumptions that are quite convenient. They derive from the following corollary.

Corollary 3.57. Let W,X be Banach spaces and let p be the performance function
associated to a perturbation P : W x X — R, that is convex, lower semicontinuous,
and such that

Z:= | JRydomP(,x) = —Z =cl(Z). (3.23)

xeX

Then if p(0) € R, p is subdifferentiable ar 0, and strong duality holds.
Note that assumption (3.23) means that Z is a closed vector subspace of W.

Proof. By Corollary 3.27, we may suppose Z = W. The set
F:={(x,r,w) EX xR xW:P(wx)<r},

being the image of the epigraph of P under an isomorphism (an interchange of
components), is closed and convex. Relation (3.23) means that the projection : C :=
pw(F) of F is absorbing, i.e., 0 € coreC. The Robinson-Ursescu theorem ensures
that F, considered as a multimap from X x R to W, is open at every (¥,7) € X X R
such that (x,7,0) € F; more precisely, there exists some ¢ > 0 such that

vt € (0,1], B(0,tc) C F(B((X,7),t)).

Setting = 1, we obtain that for all w € B(0,c) there exists some (x,r) € B((X,7), 1)
such that (x,r,w) € F, i.e., P(w,x) < r <s:= ||+ 1. Thus p is bounded above by s
on B(0,¢), hence is continuous at 0 and subdifferentiable at 0. Strong duality ensues.

O

A case of special interest is the minimization problem
()  minimize  f(x)+h(g(x)), x€D,

where f: X - R, g: D —W,h: W — R.,, with X, W Banach spaces and D a subset
of X. When £ is the indicator function i¢ of a convex subset C of W, () amounts
to the minimization of f over DNg~!(C). When W := R¥" C := Rk x {0}, one
gets the classical mathematical programming problem.

It is usual to associate to (?) the perturbation P : W X X — R.. given by

P(w,x) := f(x)+h(g(x) +w)+1p(x).
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When i = 1¢, with C := R* x {0} as above, one has

p(w)=inf{f(x) :xe D, gi(x) +w; <0, gj(x)+w; =0, i € N, j €Ny}
The objective function —p* of (Z) can easily be expressed in terms of the data:

—p"(y) = inf (p(w) = (y,w)) = inf inf (f(x) +h(g(x) +w) = (y,w))

weWw weW xeD
= inf inf (f(x) +h(g(x) +w) = (1,8(x) +w) + (8(x)))

= inf[£(x) + (8(x)) + inf (h(2) = ()]

= inf[f(x) + (8D = A" (¥).

xeD

When i = 1¢, with C a convex cone in W, h* is the indicator function of the polar
cone C?, and the function ¢ given by

£(x,y) := f(x) + (1, 8(x)) + (%) — 10 (y)

is called the Lagrangian.

To obtain duality results, one may require that P be convex. Such an assumption
is akin to convexity requirements on f, g, and h. In fact, duality results can
be obtained under the much weaker assumption that the performance function p
associated to P is convex. A criterion for this can be given by considering the set

Efg:={(wr) e WxR: Hngfl(w)ﬂD, Fx) <r}.

The pair (f,g) is said to be convexlike if E 4 is convex. We observe that E 4 is the
strict epigraph of the performance function g given by

g(w) :==1inf{f(x) : x € D,g(x) = w}.
Therefore (f,g) is convexlike if and only if ¢ is convex.

Lemma 3.58 (Bourass—Giner [163]). If (f,g) is convexlike and h is convex, then p
is convex. In fact, p is the infimal convolution hq of h and g, where g(w) := q(—w)
forw € W. In particular, when h is the indicator function of a convex subset C of W,
one has p(w) = inf,ecq(v —w).

Proof. For all w € W we have
(hOq) (w) = vlgigf (h(w+v)+q(v)) z‘gg‘%inf{h(w—i—g(x))—i—f(x) :xeD, gx)=v},

and the right-hand side is just p(w). O
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Exercises

1. Let C be a closed convex subset of a normed space X, and let o¢ be the support
function of C given by o¢(x*) := sup{(x*,x) : x € C} for x* € X*. Prove that dc =
(oc+18,.)*.

2. If C is a subset of a normed space X, the signed distance to C is the function dg
given by dz (x) :=dc(x) if x € X\ C, d: (x) := —dy\c(x) for x € C.

(a) Show that dg is convex when C is convex.

(b) Let C be a closed convex subset of X, let 1 be the indicator function of the unit
sphere in X*, and let o be the support function of C. Prove that d = (o¢ + 15)*.
(¢) Suppose C is a nonempty open convex subset of X and let w € C. Let s : x —
2w — x. Check that CNs(C) = @ and use a separation theorem. Prove the relation

inf{|[w—x|| 1 x € X\ C} = —sup{ (x*, w) — oc(x") : x* € X*\ B(0,1)}.

(d) Show that if the infimum is attained at some X € X \ C, then there exists some
X" € X* such that ¥* € S(X —w) 1= {x* € Sx+ : (x*, X —w) = ||[x—w||}. (See [173].)

3. Show that the weak duality inequality inf(.#?) + inf(#?*) > 0 stems from the
Fenchel inequality P(0,x) + P*(w*,0) > (0,x) + (w*,0) = 0.

4. Show that the dual problem of the linear programming problem
(Z?) minimize (c,x) under the constraints x € R’} ,Ax <b
can be written

(2) maximize (b,y) under the constraints y € R, ATy < —c.
5. Show that the dual problem of the quadratic programming problem
1
(<) minimize 3 (0x,x) + (c,x) under the constraints x € R, ,Ax <b
when Q is positive definite can be written

- 1, .
(2) maximize — > (O (ATy+c¢),ATy+c) — (y,b) under the constraint y € R’

6. (General Fenchel equality) Given a family fi, ..., f; of convex lower semicon-
tinuous functions that are finite and continuous at some point of X, prove that

;g(.fl(x)+...+fk(x)) = inf{ () + o () s xf e +xf =0

7. (Geometric programming) Let G(X) be the class of functions on X that are
finite sums of functions of the form x — clog(exp(af,x)+- - - +exp(aj,, x)) for some
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ar € X* (i e Ny), c> 0. Given go,g1, .. .,8 in G(X), write down a Lagrangian dual
problem for the problem of minimizing go(x) under the constraints g;(x) < 0 (i € Ny)
and give a duality result.

3.4.4 Duality and Subdifferentiability Results

Consequences for subdifferential calculus will be the final aims of this section.
The following theorem, containing both a sum rule and a composition rule, is a
step in such a direction. It generalizes Theorems 3.39 and 3.40 (Exercise 1). Again,
for a function 1: Z — R and r € R, we set {h < s} :=h~!((—e0,s]).

Theorem 3.59 (Fenchel-Rockafellar). Let XY be normed spaces, let A: X —Y
be a continuous linear map, and let f : X — R.., g : Y — R.. be convex functions
such that there exist r > 0, s € Ry for which

rBy CA({f < s} NsBx) — {g < s}. (3.24)
Then for all x* € X* one has

(f+goA) (x") = min (ff (" =ATY ) +g"(v"))- (3.25)

Moreover, for every x € dom f NA~!(domg) one has

I(f+goA)(x) = df(x) +AT(dg(Ax)). (3.26)

Proof. LetW :=Y,letx* € X*,and let P: W x X — R.. be given by
P(w,x) := f(x) — (x",x) + g(Ax+w).

For all w € rBy, (3.24) yields x,, € {f < s}NsBx and y,, € {g < s} such that w =
Yw — Ax,,. Then the performance function p given by p(w) := infyecx P(w, x) satisfies

p(w) < P(w,xy) = fxw) — (", 2x0) +8(nw) < 25+ [lx7|,

and strong duality holds. Now, for y* € Y*, setting y := Ax + w, one has

Pr(y,0) = sup  ({y",w) = (¥,x) — f(x) — g(Ax +w))

(w,x)EW xX
= sup ((x",x) — (y",Ax) — f(x)) +sup (", y) —8(¥))
xeX yew

=" —ATY" ) +g"(v"),

so that (3.25) follows from the relation
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(f+goA) (x) = — inf P(0,%) = —inf( )

= min(#") = min P*(y",0) = min (f*(x" - ATY") +£"(y")).
yrey* yrer*
Now if x* € dh(x), with h := f+ goA, one has h(x) +h*(x*) — (x*,x) = 0, and there
exists some y* € Y* such that h*(x*) = f*(x* — ATy*) + g*(y*), whence

0=(f()+ (" —ATy) = (" =ATY", ) + (¢(Ax) + &7 (V") — (ATy", %))

Since both terms in parentheses are nonnegative, they are null. Thus x* —ATy* €
df(x), ATy* € dg(Ax), and the nontrivial inclusion of equality (3.26) holds. O

Theorem 3.60 (Attouch-Brézis). Let X,Y be Banach spaces, let A: X — Y be a
continuous linear map, and let f : X — R., g:Y — R., be closed proper convex
functions such that the following cone is closed and symmetric (i.e., Z = —Z =clZ):

Z:=R,; (A(domf)—domg).
Then the conclusions of the Fenchel-Rockafellar theorem hold.

Note that the assumption on Z means that Z is a closed vector subspace. It is
obviously satisfied when the simple algebraic condition that follows is fulfilled:

Y =R, (A(domf) —domg).

Proof. Taking W :=Y, we define the perturbation function P as in the preceding
proof. Then for x € X, we have w € domP(+,x) if and only if x € dom f and
w € domg — Ax, so that the cone generated by the union over x of domP(-,x) is
R4 (domg —A(domf)), the closed linear subspace Z. Then Corollary 3.57 ensures
that strong duality holds, and the proof can be finished like the preceding one. O

Exercises

1. Show that Theorem 3.59 generalizes Theorems 3.39 and 3.40.

2. Let P be a closed convex cone of a Banach space X, let Q be its polar cone, and
let B be the closed unit ball. Prove that the distance function to Q and the support
function to PN B are equal.

3. Show that if C is a nonempty closed convex subset of X containing the origin, the
conjugate (i of the gauge function pic of Cis given by u5 =10, where CV:={x* ¢
X*: (x*,x) <1} is the polar set of C and pc is given by e (x) :=inf{re P:x € rC}.
4. LetA: X — W be a continuous linear operator. Suppose W is ordered by a closed

convex cone W, and Y := W* is ordered by the cone Y = —Wﬁ. Let b € W and let
f:X —R..
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(a) Find the dual problem of the mathematical programming problem
(2) minimizef (x), xeX, Ax <b,

using the perturbation function P given by P(w,x) := f(x) + tp(y)(x), where
Fw):={xeX :Ax<b—w}.

(b) Show that the function L : X x ¥ — R given by L(x,y) := —(P(-,x))*(y) is a
Lagrangian of (£?) in the sense that sup{L(x,y) : y € Y} = f(x) + tp(9) (x).

(¢) (Linear programming) Give an explicit form of the dual problem when X =R",
W :=R", W, =R%, and f is a linear form on X.

(d) (Quadratic programming) Give an explicit form of the dual problem when
X =R",W:=R", W, =R", and f is a quadratic form: f(x) = (1/2)(Qx,x) +(g,x),
with Q positive definite. Generalize to the case in which Q is positive semidefinite.
(See [692].)

5. Given a function f : X — R.,, check that
epi f* x {1} = (S(2)"N(X* xR x {~1}),
where Q0 :=R. (epi f x {—1}) and S is the map (x,r,s) — (x,s,7), a linear isometry.

6. Let X and Y be Banach spaces, let f,g : X x Y — R.. be proper, convex, lower
semicontinuous functions, and let p, g : X — R.. be given by p(x) := inf{ f(x,y):y €
Y}, g(x) :=inf{g(x,y) : y € Y}. Suppose that L := R, (dom p — domg) is a closed
vector subspace. Prove that for 2 : X XY — R.. given as follows, its conjugate h*
has a similar form:

h(x,y) : = (f(x,)Og(x,-)) (v) :=inf{ f(x,u) + g(x,v) :u+v =y},
R y") o= (7 Coy) B8 (7)) (7)== inf{ £ (u™,y") + g (v, y") s u v =x"}.
(See [894, Theorem 4.2].)

7. Given a Banach space X and a convex function f defined on it, show that the
Fenchel conjugate f* of f is Giteaux differentiable at some x* iff any sequence (x,)
such that (f(x,) —x*(x,)) — inf(f — x*) converges.

3.5 General Convex Calculus Rules

While the subdifferential calculus rules we have seen suffice for most uses, it is of
interest to look for calculus rules that do not require additional assumptions. Such
rules exist, but involve some fuzziness. This approximative character is typical of
the calculus rules of nonsmooth analysis. Thus this section will prepare for similar
developments in the nonconvex case that will be dealt with later on.

In the sequel, given a function f on a normed space X and a net (x;);c; of X with
limit X, it will be convenient to write (x;) — X instead of (x;) — X and (f(x;)) —
f(x). This means that for every € > 0 one can find some k € I such that for all i > k
one has x; € By(X,€) := B(X,¢, f) := {x € B(X,€) : |[f(x) — f(X)| < €}.
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For a net (x});c; weak™ converging to some X* in X* we write (x})ic; —» X*.
We first note a stability property of the subdifferential to a convex function.

Proposition 3.61. Let f be a convex function on a normed space X, let x € dom f,
(xi)ier = x, and let x} € d f(x;) be such that (x )c; 2 x* and ((xF,xi —x))ier — 0.
Then x* € df(x).

Note that the assumption ((x},x; —x));c; — 0 1is satisfied when (x});¢s is bounded.
Proof. 1t suffices to observe that for all w € X one has
(&, w—x) = lim(x, w—x) = lim (7, w—x;) <Hm(f(w) = f(xi)) = f(w) = f(x).
O

Taking for f the indicator function of a convex set C, we get the following
consequence, which can be given an easy direct proof.

Corollary 3.62. Let C be a convex subset of a normed space X, let (x;)ics be a net
in C with limit x € C, and let x; € N(C,x;) be such that (x})ic; weak* converges to
some x* and ((x},x; —x))icr = 0. Then x* € N(C,x).

3.5.1 Fuzzy Calculus Rules in Convex Analysis

Now let us turn to calculus rules. Before giving a fuzzy rule for a composite
function, let us start with a characterization of the normal cone to the inverse image
of a convex set. For the sake of simplicity, we first restrict our attention to the case
of reflexive Banach spaces. In the general case one has to replace sequences by nets,
and strong convergence in dual spaces has to be replaced by weak™ convergence.

Theorem 3.63. Let X andY be reflexive Banach spaces, let A : X — Y be linear and
continuous, and let C := A~ (D), where D is a closed convex subset of Y. Let X € C,
y := A(X). Then X* € N(C,X) if and only if there exist sequences (x,) — X, (yn) —
y:=AXin D, (y}) in Y* such that y;, € N(D,y,) for all n, and

([[ATy, =x*[[)n — 0, (3.27)
(YA Nlyn — Axall),, — O. (3.28)

Relation (3.28) can be considered as an additional information supplement-
ing (3.27) that is a fuzzy version of the equality X* = ATy* for some y* € N(D,y).

Proof. Sufficiency: given (x,), (yn), (%) as in the statement, for all x € C we have
(X, x=%) — (yn, Ax —Ax,) = (X — ATy, x) + (X", x, — %) + (ATy, —X",x,) = 0;

since ((y,yn — Axp)) — 0, we get (x*,x —X) = lim(y};,Ax — y,) <0:x* € N(C,X).
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Now let us prove the necessary condition. Let X* € N(C,X). Without loss of
generality we may suppose ¥ = 0. Let us introduce the penalized decoupling
function p, : X x Y — R.. given by

—x 2 2
Pa(x,y) = p(y) = (X7,2) +n[[Ax = y[["+ [|x] "

Noting that p,, is weakly lower semicontinuous, let (x,,y,) be a minimizer of p, on
Byx «y that is weakly compact. The relations p,,(x,,y,) < p,(0,0) = 0 yield y, € D,

— (X xn) 1 ||Ax — yul |2 + |3 ||* < 0. (3.29)

Let (X, Y- ) be the limit of a weakly convergent subsequence of ((x,,yn))n. Since
yn € D for all n and D is weakly closed, we have y. € D. Now (1 [|Ax, — y,||%) is
bounded, so that (Ax, —y,) — 0; hence Axe = Yo and X. € C. Since X¥* € N(C,X)
with X = 0, (3.29) yields

— (X ) o e | < Timinf (%) 1 Ay = yu|* + [lea* < 0 < (%),

Thus x.. = 0 and the whole sequence (x,) weakly converges to 0. Using again (3.29),
we get that (||x,||) — 0. Thus (y,) converges to lim,Ax, = 0. Then for n large
enough, (x,,y,) is in the interior of Bxy, and using the rules of convex analysis,
the optimality condition (0,0) € dp,(x,,y,) can be written, for some y;; € N(D,y,),
% € 911 (xn). and 2 € @ [|-|* (Axy —ya). as

(0,0) = (x, =X" +nz,0A,y, —nz,).

This relation yields X* = x), +nz;, oA, y; = nz,,. Thus ATy; = nz,0A =X" —x;,.
Moreover, the properties of the duality mapping J := 1d|- > yield ||lxf| =
2 ||x,]| — 0, so that (||ATy: —x*||) = (||x}||) — 0. Similarly, the properties of the du-
ality mapping of Y yield [y, [| = [[nz; || = 2n[|Ax, = ya||, so that ([|y; [ [|Axx — yall) =
(21 ||Ax, — yu||*) = 0, as (3.29) shows, since (x,,) — 0. O

The following result and the next one applied to indicator functions show that one

can drop reflexivity in Theorem 3.63. Conversely, using epigraphs, one can deduce
them from the nonreflexive version of Theorem 3.63.

Theorem 3.64. Let X and Y be Banach spaces, X being reflexive, let A € L(X,Y),
and let f := goA, where g:Y — R is lower semicontinuous and convex. Let X €
dom f, X¥* € X*. Then X* € d f (%) if and only if there exist sequences (x,) — X in X,
(yn) =¢ Y =AXinY, (y;) in Y* such that y}, € dg(y,) for all n and

(|JATyr —x*||)n — O, (3.30)

(yall - 1y = Axall), — 0. (3.31)

Assertion (3.31) can be viewed an additional information that somewhat com-
pensates the fuzziness of (3.30), which replaces the missing relation A*y* = X* for
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some ¥* € dg(¥). When (y}) is bounded, this additional information is superfluous;
this happens when g is continuous at y. It can be noted that together with (3.30),
condition (3.31) implies the condition

In fact, (v, v, —3) = (¥}, yn — Axpn) + (ATy%, x, — X), and each term converges to 0.

Proof. Let us first observe that when X* satisfies the above conditions, it belongs to
df(x), since for all x € X, by (3.32) we have

f) = F(x) = g(A(x)) — &) = lim (g(A(x)) — g(vn))
> liminf(y,, A(x) — y») = liminf(y;, A(x) - )
= limninf<ATyZ,x—f) = (X", x—%).

Now let us prove the converse when X and Y are both reflexive. Let C, D be the
epigraphs of f and g respectively and let B:=A X Ig : X X R =Y X R, so that
C=B (D). GivenX* € df(%), we have (¥*, —1) € N(C,Xy), where X := (¥, f(X)).
Theorem 3.63 yields sequences ((xn, 7)) = X7, (Vn,52)) = (5,8(9)) in D, ((z3,5;,))
such that ((z,—s}) € N(D, (yn,s,)) for all n and lim,, ||((ATz}, —s%) — (x*,—1)|| =
0, limy, ||(z, =S5 - || ns$n) — (Axn, ) || = 0. These last relations give (sj;) — 1,
(|ATyE —=%*(|)n — O for yi; :=z5/sh, (|1Vi]] - [[yn — Axal|)n — 0. We easily see that
(i, —1) €N(D, (yn,8(vm))), .., v € dg(yn). Now, since g is lower semicontinuous
and g(yn) < sp with (sn) — g(5), we get (g(vn)) — 8(3).

Proof of the converse in the case Y is arbitrary. Without loss of generality, we sup-
pose ¥ = 0. Let ¥* € df(¥) and let 4 be a modulus of lower semicontinuity of
(x,y) — g(y) — (x*,x) at (x,AX) = (0,0), i.e., a modulus p such that g(y) — (x*,x) >
g(0) — u(||(x,y)]]) for (x,y) € X x Y, and let p > 0 be such that p(r) <1 for
r € [0,p]. For n > 1, let us introduce the penalized function p, : pBxxy — R
given by

Pu(x,y) = g(y) — (&, x) +n [[Ax —y|[* + |||

The function p, being bounded below and jointly lower semicontinuous when
pBx x pBy is endowed with the product topology of the weak topology on pBy
with the strong topology on pBy, and pByx being compact, given a sequence (z,) in
(0, 1) with limit 0, Corollary 1.90 yields a pair (x,,y,) € pBx x pBy such that

V(x,y) € pBx X pBy,  pn(%Xn,Yn) < pu(x,) +tn [y — yull - (3.33)
Then the relations

Pn(Xn;yn) < pu(0,0) + 1 [|yall = g(0) + 1 [[yn]]
< g(n) = & 2x0) + L[ Con, ) ) + 2 [ 9]
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yield
7 [[yn = Ax® + 6l < (| o) )+ tap < 14p, (3.34)

so that (y, —Ax,) — 0 and ||x,||* < 1+ p. Let us show that (x,) — 0; this will also
imply (y,) — 0. Let us assume, to the contrary, that for some ¢ > 0 and some infinite
subset N of N we have ||x,|| > « for all n € N. Using the reflexivity of X we get an
infinite subset P of N such that (x;),cp — X weakly for some x.. € (1+p)By. Since
A is weakly continuous and (||y, —Ax,||) — 0, it follows that ((x,,yu))nep weakly
converges to (Xe, Yoo ), With Yeo = A (X ). Taking limits in the relations p, (x,,y,) <
Pn(0,0) +1, |[ynll = 8(0) +1, |[ynll = £(0) 41, ||yn|| and using the fact that ¥* € d f ()
and that g is weakly lower semicontinuous, we get

g3) = (%", 0) + 0 < Timinf () = (¥ %) + 71 llAxa =yl + xa]1*) < £(0)
< f(Xw) - <X*7x°°> = g(yw) - <)_C*7x°°>7

a contradiction. Hence (x,) — 0, and since (y, — Ax,) — 0, we get (y,) — 0. Then
limsup, g(yn) < limsup,, p(xn,y») < g(0), and since g is lower semicontinuous,
(g(yn)) — £(0). Moreover, by (3.33), for n large enough, (x,,y,) € pBx X pBy is a
local minimizer of the function

- 2 2
qn: (6,5) = (6, Y) +ta |ly — yall = g(v) = &, ) +n[|Ax = y||7 + [ [|" 4+ |y — yal| -

It follows from Theorem 3.39 that we can find y’ € dg(yn), x: € 9 ||-|* (xn), W' €
By+,and Z* € 9 ||-||* (Ax, — y,) such that

(0,0) = (x, =X" +nz,0A,y, — nz, +tw,),

or X = x; +nz,0A, y; = nz, —ty,wy. Thus ATy, =yj0A =X —x, — t,ATw},.
Again, the properties of the duality mapping yield |[x}|| = 2|jx,|| — 0, so that
(lATy: —=x*||) = (|]x; +t,ATW}||) — 0. Similarly, the properties of the duality
mapping of Y yield ||yk|| = ||nz} — tawh|| < 2n||Ax, — ynu|| + #n, and setting r, =
s )l S0 = W (r) + tup, it follows from inequality (3.34) that

v lH[AX0 — yull < Z”HAxn_)’n”z"'tnHAxn_)’n” < 28y +tn [[Axn — yu| — 0.
O

In arbitrary Banach spaces one can get rules that are similar to those we proved
in reflexive Banach spaces; however, since closed balls are no longer weakly
compact, in order to use compactness arguments, one has to take restrictions to
finite-dimensional subspaces. Such a process brings nets into the picture (the family
of finite-dimensional subspaces being directed, but not countable in general).

Theorem 3.65. Let X,Y be Banach spaces, A : X — Y a continuous linear map,
and let f := goA, where g:Y — R, is lower semicontinuous and convex. Let X €
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dom f, X¥* € X*. Then X* € df (%) if and only if there exist nets (x;)ic; — X in X,
(vi)ier =gy :=AXinY, (y})icr in Y* such that yi € dg(y;) for all i € I and

(ATY!)ier %", (3.35)
(Y[ [ly: = Axill)jep — O, (3.36)
(7 5yi=¥))ier = 0. (3.37)

More precisely, if X € df(%), then for every finite-dimensional subspace W of X
containing X there exist sequences (x,) =X in W, (yn) =,V :=AXinY, (y;) inY*
such that y% € dg(yn) for each n and

([IATy, [w =% [w)a — O, (3.38)
(2l - l[yn = Axal)), = O. (3.39)

If (v} )ier has a bounded subnet (y}),e/, for every weak*-cluster point y* of
(y;)jgj one has ¥* = AT(¥*) and y* € dg(X), but in general the net (y})ic; is
unbounded.

Proof. The proof of the sufficient condition is similar to the one given above.
The second assertion is a simple application of Theorem 3.64, denoting by B :
W — X the canonical inclusion and observing that fo B = go (Ao B), that X* |y €
d(f oB)(X), and that for every x* € X*, y* € Y* one has x* |w= BTx*, ATy* |y=
(Ao B)T(y").

Now let us make clear why the first assertion stems from the second one.
We denote by P the set of positive numbers, by # the set of finite-dimensional linear
subspaces of X ordered by inclusion, and we provide the product I := # x P with
the order (W, r) < (W', /)it W C W', ¥ <r. Thus[ is directed. The second assertion
(with the axiom of choice) makes it possible to pick for every i := (W, r) € I some
(x1,31.37) € X x ¥ x ¥* such that |lx; —3I| < r. |y =¥ < r. |g(y) — ()| < 1.} €
9g(v), ATy} lw —%* lwll < . ]I Ilyi = Axill < r. [{yf,yi— )] < . These choices
provide the required nets. In fact, given € > 0 and a finite set F := {ay,...,a;}
of unit vectors in X, denoting by Wr the linear space generated by F and setting
ie := (Wp,€), fori > ip, we have ‘(ATyl’f —X*,aﬂ‘ <efori>ig, j=1,...,k, sothat
(ATy¥)ies — % we also have |[y?]|. |lyi — Ax;|| < & for i > ie. O

A sum rule can be deduced from the chain rule. It holds for every finite family
(f j)lg j<k of lower semicontinuous convex functions on X, with a similar proof,

replacing X2 by X* and (f1, £2) by (f)).

Theorem 3.66. Let fi, f> be lower semicontinuous proper convex functions on a
Banach space X and let f := fi + f> be finite atX € X. LetX* € X*. ThenX* € d f(X)
if and only if for every finite-dimensional linear subspace W of X and for j = 1,2,
there exist sequences (Xjn)n — X in W, (X7 ,)n in X* such that x7,, € df;(x; ) for
all j, n, (fj(xjn))n — fj(X) for j=1,2 and
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(15w +55, lw =X w|[)n — 0, (3.40)

(o1 = x2ll- (el + 5.l = 0 (341)
Thus X* € df(X) if and only if for j = 1,2, there exist nets (x;;)ict —f; % (X} )icr
such that x3; € dfj(x;;) foralli€1, j € {1,2} and

(¥ 23 )ier = X, (3.42)

(lloer = xaill (|5 ||+ []25.]]))ier = ©. (3.43)
Proof. The sufficient condition is a simple verification. We first note that

(X %10 = X) + (x5 %2, —X) = (X7 +25 5, X1, — X) + (X5 1, X2, — X13),
so that (3.42) and (3.43) imply
(6755 X1,i = X) + (x35,%2 — X) )i = 0. (3.44)

Givenx* € X * satisfying the above conditions, we have (f1(x1 ;) + f2(x2,1))i — f(X);

hence for all x € X, the inequalities f;(x) — fj(x; ) > (x} ;,x—x;;) fori €1, j=1,2,
(3.42), and (3.43) imply X¥* € d f(X), since

F6) = F) = timinf (5] 5 —x1) + (33,5 —x2,))

> liminf ((x] ;+x3 ;,x— X)) = (X", x—X).
\ : :

Now let us prove the necessary condition. Let ¥ = X2 endowed with the
supremum norm and let g : ¥ — R., be given by g(xi,x2) := fi(x1) + f2(x2).
For A : X — Y given by Ax := (x,x), we have f = goA. Applying Theorem 3.65,
we get nets (or sequences when X is reflexive) (x;); — X in X, (y;); LN y:=AXinY,
(yf)iin Y* with (ATy}) S, (1l - llyi — Axi||) — O such that y; € dg(y;) for all i.
Setting y; 1= (x1,i,X2,), i = (x] ;X5 ;), we easily see that y; € dg(y;) means that
xj’i S afj(XjJ) for J = 1,2 and all i. Since ||X17,'—XQ71'| < HXU —x,'” + Hxl- —x2’i|| <

2||lyi — Axj|| and ATy} =xj,;+x3,, we get (xii —I—x;’i),'g[ 5 x* and
(e = x2,ill) (|27 il + (|32 < 2 llyi = A Iy || = 0.

Moreover, since for each j = 1,2, f; is lower semicontinuous at X, we have
liminfifj (Xj’,‘) > fj ()_C) and
limsup /1 (x1,7) = limsup (g(vi) — f2(x24)) < g(¥) —~liminf f>(x2,7)
1 1

g(A%) — f2(X) = fi(x),
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so that (fi(x1))i = fi(X), and similarly, (f>(x2;)); = f>(¥), as announced. O
Remark. Since (fj(x;;)); — f;(¥) and x7; € df;(x; ;) for each j € {1,2} and all i,
we deduce from (3.44) that ({x} ;,x;; —X)) — 0 for each j € {1,2}. O

Remark. The fuzzy sum rule is in fact equivalent to the fuzzy composition rule.
Let us show that we can deduce the latter from the former. Given f := goA, let
F:X xY — R be given by F(x,y) := g(y) + 1g(4)(x,y), where G(A) is the graph
of A and 154) is the indicator function of G(A), so that for all x € X we have

=infF .
fx) = inf F(x,y)
Given X* € df(X), since F(X,AX) = f(x), Proposition 3.37 ensures that (¥*,0) €
JF (x,AxX). Now, by Theorem 3.66, there exist nets (w;,y;) — (%,5), (x;,2i)i —
(X,A%), (Wi, y}), (xF,2F) such that (x;,z;) € G(A), i.e., zi = Ax;, wf =0, yF € dg(yi),
(x7,2]) € digay(xi,zi) = N(G(A), (xi,z;)) for all i and

(0,y7) + (xF,27) = (x*,0), (3.45)
max ([|x; — will , l|zi — il ([]F |+ llz7 || + [y7 []) — 0. (3.46)

Since (x},z]) € N(G(A), (xi,zi)), we have x; = —ATz;. Thus (3.45), (3.46) yields
(3.35), (3.36). 0

A variant of the fuzzy sum rule will be useful, in particular in the case that the
second summand is the indicator function of a weakly compact convex subset.

Proposition 3.67. Let h := f+ g, where f,g are convex, lower semicontinuous,
finite at X € X. Suppose there exists some 'y > 0 such that K := {x €X+ yBx : g(x) <
g(X) + v} is weakly compact. If X* € dh(X), then there exist sequences (w,) — X,
(zn) =g X, (W), (z}) such that w}, € d f(wy), z € dg(zy) for alln € N and

(Iwy + 2 =%[), = O,

((Uwall 1zl [1wn = zall), = O

Proof. Changing f into f —X* and performing a translation, we may suppose x* =0
and X = 0. Let 4 be a modulus of lower semicontinuity of (w,z) — f(w) + g(z)
at (0,0), i.e., a modulus p such that f(w)+g(z) > £(0) +g(0) — u(||(w,2)||) for
(w,z) € X* and let p € (0,7) be such that u(r) < y/2 for r € [0,p]. Forn > 1, let us
introduce the penalized decoupling function p, : pBy2 — R., given by

Pu(w,2) = f(w) +8(2) +nllw—z|* +[|wl]*.

For all (w,z) € pBy2 we have f(w) > f(0) —v/2, so that if (w,z) satisfies p,(w,z) <
Pn(0,0) +7/2, hence g(z) < f(0) +8(0) = f(w) +7/2 < g(0) +7, we get z € K.
Since p, is bounded below and jointly lower semicontinuous when pByx X pBy is
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endowed with the product topology of the strong topology with the weak topology in
which K is compact, given a sequence (7,) in (0, 1) with limit 0, the partial Ekeland
theorem yields a pair (wy,z,) € pBx X pBx such that

V(W,Z) € pBx X pBy, Pn(WmZn) < pn(W,Z) +1n HW_WnH-

In particular, p,(wy,z,) < pn(0,0) + 1,0 < pn(0,0) + y/2 for n large and z, € K.
Then, since p,(0,0) = i(0), the relations

Pn(Wnyzn) < pu(0,0) 4+t [[wall < f(wn) +g(zn) + L ([[(Wn, 20)[|) +1ap
yield
n|\z _WnHz‘Hn ||Wn||2 < u(l[(wn,zn)l) +tap < v+p, (3.47)

so that (z, —wj,) — 0. Let us show that (w, ) — 0. Suppose, to the contrary, that there
are o > 0 and an infinite subset N of N such that ||w,|| > o for all n € N. Using the
weak compactness of K, we get a weak limit point z of (z,),en, and taking limits in
the relations p,(wy,zx) < pn(0,0) 4+, ||wul] < h(0) +1,p, since X* = 0, we get

F(0) +8(2) + o < Timinf py (wn,z) < 5(0) < f(2) +8(2),

a contradiction. Thus (w,) — 0 and (z,) — 0. Then for n large enough, (wy,z,)
is a local minimizer of the convex function g, : (w,2) — pn(w,z) + tn [|[w — wi||.
It follows that we can find w’ € 3 (wy), z: € 0g(za), i € A ||-||* (Wn), v € By,
and x € 9 ||-||* (W — z,) such that

(0,0) = (W), + nx;, + u), + tyvy, 75 — nxy,).

This relation means that zj, = nx;; = —wj, —u; —t,v;. The properties of the duality
mappings yield [|u || =2 [[wa[| = 0, [lx;]| = 2 [[wn = zal| = 0, so that ([|z; +w;[[) =
([l 4 tavyll) — 0. Thus [|z; || = [[ny[| < 2n{|lwy — 2|, and setting ry = [[(wn, 24|,

sn = W(ry), it follows from inequality (3.47) that

znll - [[Wn = zall < 27 |lwy, _Zn”2 <28, +2t,p — 0,
[wall - lwn = zall < lwy + 23]l [Wn = zall + |25l - [Wn — zall = 0.
Finally, since g is lower semicontinuous,
limsup f(w,) + g(0) < limsup f(wy) + liminfg(z,)
n n

n

< limsup (f(wn) + &(zx)) < limsup p(wy,z,) < £(0) +g(0),

so that (f(z,)) — f(0). Similarly, (g(z,)) — g(0). O
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Corollary 3.68 (Brgndsted—Rockafellar). For a closed proper convex function f
on a Banach space X, the set of points x € X such that d f(x) is nonempty is dense
in dom f. More precisely, for every X € dom f there exists a sequence (x,) —¢ X
such that d f (x,) # @ for all n € N. One can even find (x,) — ¢ X and (x},) such that
(x50 - lxn —X||) — 0 and x}; € d f(x,,) for alln € N.

Proof. Given X € dom f, let S := {X} and g := 15; then g satisfies the compactness
assumption of Proposition 3.67. Since fs5 := f + 1 attains its minimum at X, one has
0 € dfs(X). Then the fuzzy sum rule of that proposition yields the result. O

3.5.2 Exact Rules in Convex Analysis

Technical assumptions, called qualification conditions, can be given in order
to ensure the expected equalities d(f + g)(x) = df(x) + dg(x) and Jf(x) =
AT(dg(Ax)) in the composition rule for f = goA. They involve the asymptotic
subdifferentials of the functions, where for x € dom f, the asymptotic subdifferential
of f at x or singular subdifferential of f at x is defined as follows:

Owf(x) :={x" € X" : (x",0) e N(Ef,x¢)}

with xf := (x, f(x)), Ef being the epigraph of f. The terminology and the notation
are justified by the following observations. Here, the asymptotic cone T..(C) of
a nonempty subset of a normed space Y is the set limsup,_,.,C/r of limits of
sequences (x,/t,), where (t,) — oo, x,, € C for all n. Thus if C is bounded, one
has 7..(C) = {0}. When C is a closed convex subset, 7..(C) is the set of y € Y such
that for all yg € C and t € R one has yo+ty € C.

Proposition 3.69. Let f: X — R.. be a convex function on a normed space X and
let x € dom f.

(a) u* € Owf(x) whenever there exist nets (t;)ic; — Oy, (Xi)icr =1 % (x])ies in X*
with (t:x7) = u*, ({tixF,x; — x))ier — 0, and x; € df (x;) forall i € I.

(b) If 9 f(x) is nonempty, then d-f(x) is the asymptotic cone of d f (x).

(c) If f is continuous at x, then dwf(x) = {0}

Proof. (a) Given (t;)icr, (Xi)ier, (x])ier as in the statement, setting z; 1= (x;, f(x;)),
2i=xp = (x,f(x)), & = (tix},—t;) € N(Ey,z;), one has ((z/,z; —2))ies — 0, and
hence (u*,0) € N(Ey,xs), in view of Proposition 3.62.

(b) Let xj; € d f(x). Then for all u* € d.f(x) and all r € R, since N(Ey,z) is a
convex cone, one has (xj +tu*,—1) = (x5, —1) +1(u*,0) € N(Ef,z), and hence u*
belongs to the asymptotic cone 7o, (d f(x)) of d f(x). Conversely, if u* € T..(d f(x)),
for all # > 0 one has (x{; + tu*,—1) € N(Ey,z), hence («*,0) = lim;_et ' (x} +
tu*,—1) € N(Ef,z),i.e., u* € 0 f(x).

(c) If f is continuous at x, then d f(x) is bounded and nonempty; hence dw. f(x) =
{0} by (b). O
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We need the following compactness notions.

Definition 3.70. A convex subset C of X is normally compact at X € C if a net
(u})icr has a nonnull weak* cluster point whenever there exists a net (x;)ic; —>¢ X
such that u’ € N(C,x;) N Sx+ foralli € 1.

A convex function f : X — R, is normally compact at X € domf if its epigraph
is normally compact at Xy := (X, f(X)). A convex function f : X — R. is said
to be subdifferentially compact at ¥ € dom f if for every net (x;,x});c; such that
(x,'),‘el —f X, (<xl’»‘,x,~ —f))ieI — 0, (fo”) — 4o0, and x}‘ S 8f(x,) for all i € I, the
net (||x} |~ x})ier has a nonnull weak™ cluster point.

Clearly, in a finite-dimensional normed space, every convex set is normally compact,
and every function is normally compact. Moreover, one has the following criteria.

Lemma 3.71. (a) If the interior of a convex set C is nonempty, then C is normally
compact at all x € C.

(b) If a convex function f is normally compact at X, then f is subdifferentially
compact at Xx.

(c) If a convex function f is continuous at some point of its domain, then f is
normally compact at each point of its domain.

(d) A convex set C is normally compact at X if and only if its indicator function
Ic is subdifferentially compact at X.

Proof. (a) Leta € C and r > 0 be such that the ball B(a,r) is contained in C. Then
for every net (x;);c; of C with limit x € C, every net (] );cs such that u} € N(C,x;),
|luf|| = 1foralli el forall u € By one has (uf,a+ ru—x;) <0, hence

(ui,a—xi) < —rlluil| = —r,

so that every weak™® cluster point u* of (u});cs satisfies (u*,a —x) < —r, hence is
nonnull.

(b) Let ((x;,x}))icr be a net in df with (x;) —=¢ X, (||x]]|) = oo. Let z; :=
(xi, f(xi)), and let t; == ||(x}, —1)||. For i € I, (u},r;) := (t; 'xF,—t; 1) € N(Ey,z)
is a unit vector and (z;)ies — £, Xr. Then if (u*,7) is a nonnull weak™ cluster point of
((uf,r;)), one has r = 0, hence u* # 0, and since (7, ! ||x||) — 1, the net (||x}||~'x})
has a nonnull weak™* cluster point u*.

Assertion (c) follows from assertion (a).

(d) Suppose ¢ is subdifferentially compact at X and let (x;);c; — X in C, x} €
N(C,x;)NSx+ forall i € I. Let r; := (x},x; —X) so that (r;) — 0. Suppose first that
J:={j€1l:rj=0}is bounded above by some i. Then fori € I’ :=1\J, lets; := r;1/2
and y7 :=sixj € dic(vi) for yi :=x;, so that (||} [|)iey — e and ({y},yi = X));cp =0,
and we conclude that (x}) = (y;/|lyf||) has a nonnull weak* cluster point. Now
suppose J is not majorized, i.e., J is cofinal. Then for k := (j,n) € K :=J x N,
setting x; := nxj € dic (x) for x := x;, one has (x},x; —X) = 0, and we conclude

again that (x}) jes = (x;/ ||x% || kek has a nonnull weak* cluster point.
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The reverse implication is immediate: given a net (x;,x});c; in the graph of dic
such that (x;)ier — X, (||x}||) — oo, the net (Hx;‘H*lxi*),'e[ has a nonnull weak*
cluster point, since u} := ||x*|| ' x* € N(C,x;) N Sy~ forall i € I. O

A characterization of normal compactness can be given.

Proposition 3.72. A convex set C is normally compact at X € C if and only if for all
nets (x;)ic; —¢ % and (x})icy such that x; € N(C,x;) for all i € I one has

(xD)ier = 0= (||x}|)icr — 0. (3.48)

Proof. Suppose C is not normally compact at X. Let (x;)ic; —¢ X and let (x});es in
Sx satisfying x; € Np(C,x;) for all i € I and such that 0 is the only weak™ cluster
value of (x}). Since Bx+ is weak* compact, the net (x}) weak* converges to 0. Then
if relation (3.48) holds, (||x}||) — 0, a contradiction to ||x}|| = 1 for all i.
Conversely, suppose the property of the statement is not satisfied. Then there
exist nets (x;) —¢ X and (x}) = 0 satisfying x7 € Np(C,x;) for all i € I such that
(Ixf]]) does not converge to 0. Taking a subnet if necessary, we can assume that
there exists some r > 0 such that ; := ||x}| > r for all i. Then (x}/r;) = 0, so that it
cannot have a nonnull weak® cluster value and C is not normally compactatx. O

Using the notion of normal compactness, one can give an exact version of
Theorem 3.63 and exact subdifferential rules.

Theorem 3.73. Let f,g be closed proper convex functions finite at X. If f (or g) is
subdifferentially compact at X, one has d(f + g)(X) = d f(X) + dg(x), provided

0= f (%) N (—dwg(x)) = {0} (3.49)

Proof. By Theorem 3.39, givenX* € d(f +¢)(X), there exist nets (w;) = ¢ X, (z;) —¢
X, (w}), (z) such that wi € df(w;), zf € dg(z;) for all i and

1

([lwi +zi =x*[]); =0, (3.50)
(wi,wi —X%))i =0, (zF,2i—%))i = 0. (3.51)
Let r; := ||w}||. Suppose (ri)ics has a subnet (r;) jc; with limit 4-eo. Taking a subnet

if necessary and using the subdifferential compactness of f at X, we may suppose

(V;IW;)je‘] has a nonnull weak™ limit w* € d.f(X). Then (rj’l)_c*)jej — 0, whence

by (3.50), (r;lzj)jej 2 —w*, whence using again (3.51), we have —w"* € 0-.g(%),
a contradiction to assumption (3.49). Thus (||w}||)ics is eventually bounded, and a
subnet (w7)jes of (w)ier has a weak™ limit w* € d f(X) by Corollary 3.61. Then a
subnet (z}) jes of (27 )ies has a weak™ limit z* € dg(X) and w* + 7" =" O

Theorem 3.74. Let X, Y be Banach spaces, let A € L(X,Y), and let f := goA,
where g 1 Y — R is lower semicontinuous and convex. Let X € dom f, x* € X*,
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y := A(X). Suppose g is subdifferentially compact at y. Then df(x) = AT(dg(7)),
provided
0-8(¥) NkerAT = {0}. (3.52)

Proof. 1t suffices to prove that df(X) C AT(dg(¥)). Given X* € df(%), let (x;)icr,
(vi)ier, (b7)icr be as in Theorem 3.65. Let r; := ||y}]|. Suppose (r;)ic has a subnet
(rj)jes with limit +ee. Taking a subnet if necessary and using the subdifferential
compactness of g at y, we may suppose (r;lyf) jes has a nonnull weak™ limit z*.
Then, since x* = w*—1lim;AT(y}), one has AT(z") = w*—lim; r]-’lAT(yj-) =0,a
contradiction to relation (3.52) and the fact that z* € d..g(¥) by Proposition 3.69.
Thus (||y;[|)ies is eventually bounded, and a subnet (y}) e of (y;)ics has a weak”
limit y*. Then one gets x* = AT(y*), and Corollary 3.61 entails y* € dg(¥). O

Exercises

1. Composition rule with openness. Let X,Y be Banach spaces, let A € L(X,Y)
be surjective, and let f := goA, where g: Y — R.. is lower semicontinuous, convex,
and finite at y := AX. Given X* € df(X), deduce from the definition of d f(X) that
for every u € KerA one has (x*,u) = 0, so that there exists some y* € Y* satisfying
X* =y* 0 A. Conclude from the surjectivity of A that y* € dg(¥).

2. Subdifferential determination of convex functions. Given two lower semicon-
tinuous proper convex functions f, g on a Banach space X such that d f C dg, prove
that there exists some ¢ € R such that f(-) = g(-) + ¢. [Hint: Reduce the question to
the case X = R by taking composition with an affine map from R to X; see [918].]

3. Mixed calculus rule. Given reflexive Banach spaces X and ¥, A € L(X,Y),
lower semicontinuous functions f : X — R, g:Y — R. finite at X € X and
y := AX respectively, show that X* € J(f + go A)(x) if and only if there exist
sequences ((xn,x%)), ((vu,y5)) in the graphs of df and dg respectively such that
(o +AT(y)) = X, (xn) =7 X, (yn) —¢ ¥, and

(Ul + 11y D)- llyn — Axall) = . (3.53)

(x5, xn —%)) =0, (s, —75)) = 0. (3.54)

4. Equivalence of complementary conditions. With the data of the preceding
exercise, show that when x; € df(x,), yi € dg(yn), (x; +AT(y;)) = X, (x0) = %,
(yn) —¢ ¥, condition (3.53) is equivalent to condition (3.54). [See [918].]

5. Examine the relationships between the Attouch—Brézis qualification condition
and the qualification condition of Theorem 3.74.

6. Subdifferential of a distance function. Let C be a closed convex subset of a
Banach space X and let w € X \ C, w* € ddc(w). Show that for every € > 0 there
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existx € C,x* € N(C,x) such that |[x —w|| < dc(w)+ €2, |x* —w*|| < &. [Hint: Pick
v € C such that ||v — w|| < dc(w) + € and use the Ekeland variational principle for
the function f defined on X x X by f(u,x) := ||u—x|| — (W*,u) + 1c(x).]

7. Deduce from Exercise 6 that when C is a closed convex subset of a Banach space
X and w € X \ C has a best approximation x in C, then one has ddc(w) C N(C,x).

3.5.3 Mean Value Theorems

Mean value theorems can be deduced from the fuzzy calculus rules we established.
They may serve as introductions to similar results in the nonconvex case.

Theorem 3.75 (Fuzzy mean value theorem). Let X be a Banach space and let
f X = R., be lower semicontinuous, convex, and finite at x € X. Then, for every
y € X\ {x} andfor every r € R such that f(y) > r, there exist u € [X,y) and sequences
(un) =5 u, (uy;) such that ((u,u, —u)) — 0, u;, € A f(uy) for all n and

liminf(u, 5 —%) > r— f(%), (3.55)

([t || d (uan, [%,5])) — O, (3.56)

[l — ul]

lminf(u’,x — i) > (r—f(x) YxeGE+R.(G-%)\[Fu). (3.57)

" [y —xIl

Proof. Let e* € X* be such that (¢*,5 —X) = f(X) —r and let g : X — R.. be defined
by g(x) := f(x) + {e*,x) + 15(x), where S is the segment [X,¥]. Since g(¥) > g(%),
the lower semicontinuous function g attains its minimum on S and X at a point
u€ S, u#y. Writing g := h+15 with h := f+¢*, Proposition 3.67 yields sequences
(tn) —=pu, (vo) =su, (1), (vi) such that (u) +e*+v5) =0, (||[Vi|| - ||vn — unl|) — 0,
us € df(un), v € dig(v,) for all n. Then v, € S\ {3} for n large enough, y— v, =
1, (¥ —X) for some 1, € (0,1), and since (v, 5 —v,) <0, we get (v, —%) <0. Thus

liminf(x,, 5 — %) > liminf(u, +v;,5—%) = —(e",y—X%) =r— f().
n n
Since v, € S, we deduce from (||u}]|.[|v, — unl||) — O that ||u:]|d(un, [X,5]) — O.
Finally, given x € (x+ R (¥ —X)) \ [¥,u), setting x := u+¢(y —X) withr € R, and
observing that lim,, ((u} + e*, u, — u) + (v, v, —u)) = 0 and (v;,u —v,) <0 for all
n, we get liminf, (s}, u — u,) > 0 and

liminf(u,,x — up) > liminf(u), u — u,) + liminfz (u;,,y — %) > t(r — f()),
n n n

hence relation (3.57). a
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Corollary 3.76 (Usual mean value theorem). Let W be an open convex subset of a
Banach space and let f : W — R be convex and continuous. Then for every x,y € W,
there exist u € [x,y) and u* € d f(u), such that

W y=x) =) - f(x). (3.58)

Proof. We extend f by 4o on X \ V, where V is a closed convex neighborhood
of [X,¥] contained in W, and we pass to the limit in (3.55), using the fact that the
multimap d f is locally bounded and closed by Proposition 3.61. a

More powerful forms of the preceding result can be given. Here, instead of
considering a function f on a segment [X,y| of X, we suppose f is defined on a
neighborhood of a “drop” D:

D=[xCl:= &y ={(1-1)x+1y:yeC,1€[0,1]},
yeC

where C is a closed convex subset of X and X € X. We observe that D is the convex
hull of CU {X}. In the present section, we limit our study to the case of a compact
convex set C. We start with a generalization of Rolle’s theorem.

Theorem 3.77 (Multidirectional Rolle’s theorem, compact case). Let C be a
weakly compact convex subset of a Banach space X and let X € X\ C, D := [x,C].
Suppose [ : X — Re is convex, lower semicontinuous, finite at X, and inf f(C) >
f(X). Then there exists u € D\ C such that f(u) = inf f(D), and for every € > 0 one
can findw € B(u,€) and w* € d f(w) such that | f(w) — f(u)| <&, [{(w*,w—u)| <&,

Why—x) > —elly—x]| VyeC, (3.59)
W' x—w)>—¢|x—w||—¢ Vx ex+ Ry (C—%), (3.60)
w*lld(w, D) <&. (3.61)

Proof. In fact, the result is valid for every u € D\ C such that f(u) = inf f(D),
as we shall see. Without loss of generality, using the translation by —X, we may
assume X = 0. Since D is weakly compact and f is lower semicontinuous, we can
find a minimizer u of f on D. Since inf f(C) > f(X), we may suppose u € D\ C and
reduce € if necessary to have € < d(u,C). Then 0 € d(f + g)(u), where g := 1p, the
indicator function of D, satisfies the compactness assumption of Proposition 3.67.
Its conclusion yields w, z € B(u, €), with | f(w) — f(u)| < €,z € D, and w* € d f(w),
z" € N(D,z) such that

W +2"]| <&, will w—zll <e, l7].lw—zll <e.
Relation (3.61) stems from the inequalities |[w*|.[|w —z|| < &, d(w,D) < [|w—2]|.

Since € < d(u,C), and since ||z — u|| < &, we have z € D\ C. Then since [1,+o)C is
closed, as is easily seen, and since D\ C=R,CN (X \[1,4)C), we have N(D,z) C
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N(D\C,z) = N(R.C,z), whence (—z*,rc —z) > 0 for all » € Ry, ¢ € C. Then
relation (3.60) holds: for x := rc € R..C we have

Whx—w) > (=25 x—w) —g|x—w|
> (= ax—2)+ (= z—w)—¢|x—w|| > —e—¢lx—w].

Giveny € C,letc:=ty+ (1 —1)y € C, where t € (0,1] and y € C are such that
z =1tX+ (1 —1)y. Using the inequality 0 < (—z*,c —z) = (—z",#(y — X)) and the
relation ||w* 4 z*|| < &, after dividing by # we obtain (3.59):

Wy =%) > (=", y—%) —¢|y—x| > —¢lly—%.

a

Theorem 3.78 (Multidirectional mean value theorem, compact case). Ler C be
a weakly compact convex subset of a Banach space X and letx € X\ C, D := [x,C].
Suppose f : X — Rw is convex, lower semicontinuous, finite at X, and let r € R be
such that r < inf f(C). Then there existy € C, s € [0,1), u:= (1 —s)x+sy € D\C,
and sequences (uy) — u, (1) in X* such that (f(un)) — f(u), ((u},u—uy)) — 0,
u, € df(uy) foralln €N, and

liminf(u’,y—%) > r— f(X)  WeC, (3.62)
liminf{u,,x —%) > (t —s)(r— f(%)) Vi eRy, Vxex+t(C—%), (3.63)
1] d (i, D) = 0. (3.64)

Proof. Let C':=Cx {1} C X' := X xR, ¥ := (x,0), and let /' : X’ — R, be
given by f'(x,1) := f(x) +1(f(X) —r), so that inf f'(C") > f'(¥'). Given a sequence
(&,) — 04, let us apply Rolle’s theorem above to f’ with C, X, € replaced by C/,
X, €. We get w:= (u,s) € (D\C) x [0,1), sequences (wy) := ((ttn,5)) — (u,5),
(wh) = (u};,st) satisfying w) € df'(w,) for all n € N, i.e., u; € df(un), sk =
S — 1, () + 5 (FE) — 1) = £() +5(f(3) — r), whence (f(un)) - f(u),
((uph,u—up) + 55 (sp —s)) — 0, whence ((u);,u —u,)) — 0,and forally e C,t € Ry,
setting y := (y, 1), x' :=% +t(y - %),

Uy =%) + f(x) —r> =&y =Xl — & vyeC,
Wpx—u)y+(t—sn)(fx)—1r) > —&|lx—w| —¢& Vi e Ry, Vx €ex+1(C—X),
[l d(un, D) < &n.
Passing to the limit, we get the announced relations. O

One can get rid of the compactness condition on C. We shall show this later,
dropping the convexity assumptions, too, at the expense of changing the Moreau—
Rockafellar subdifferential into an adapted subdifferential.
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Exercises

1. Let f: X — R.. be convex, lower semicontinuous, finite at X,y € X with f(X) =
f(&). Show that there exist u € (X,y) and sequences (u,) —¢ u, (u;) such that u}; €
2f (un) for all n, (f(un)) — f(u)s (1,5 5)) — 0, (| d(an, [7.5])) = 0, and
((ul,u—up)) — 0.

2. Show that the mean value theorem is a special case of the multidirectional mean
value theorem in the compact case.

3. Use the mean value theorem to show the equivalence of the following assertions
about an arbitrary lower semicontinuous convex function f on a normed space X:

(a) There exist constants a, b such that for all x € X one has f(x) < a [x||* +b.
(b) There exist constants c,d such that for all x € X, x* € df(x) one has ||x*|| <
c||x|| +d. [Hint: See [449, Proposition 4.3].]

3.5.4 Application to Optimality Conditions

Let us apply the above calculus rules to the constrained optimization problem
(¢) minimizef(x) subject to x € C,

where f : X — R is convex and C is a convex subset of X. We assume that f takes
at least one finite value on C, so that inf(%’) is not 4. Then (%) is equivalent to
the minimization of fr := f+1c on X.

Optimality conditions for problem (%) involve the notion of normal cone to C at
some X € C; in the convex case we are dealing with here, its simple definition was
given before Proposition 3.23. We recall it for the reader’s convenience: the normal
coneto C atX € C is the set N(C,X) of continuous linear forms on X that attain their
maximum on C at X:

N(C,%) :=0dc(X) ={x" €eX*:VxeC (x*,x—X) <0}.

Example. If ¥ is in the interior of C, one has N(C,x) = {0}, since a continuous
linear form that has a local maximum is null. ad

Example. Let g € X*\ {0}, c € R, and let D := {x € X : g(x) < c¢}. Then if X is
such that g(¥) < ¢, one has X € intD, hence N(D,x) = {0}, while for all X such
that g(X) = ¢, one has N(D,x) = Ryg. In fact, for every r € Ry and all x € D one
has rg(x —X) <0, hence rg € N(D,X). Conversely, let h € N(D,x). Then for all
u € Kerg, one has X+ u € D, hence h(u) < 0. Changing u into —u, we see that
Kerg C Kerh, so that there exists r € R such that 4 = rg: picking u € X satisfying
g(u) =1 (this is possible since g # 0), we have r = h(u), and since X —u € D, we
get that —r = h(—u) = h((x —u) —X) <0, hence r € R. O
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Theorem 3.79. A sufficient condition for X € C to be a solution to (€) is
0€df(x)+N(C,x).
Under one of the following assumptions, this condition is necessary:

(a) f is finite and continuous at some point of C;

(b) f is finite at some point of the interior of C;

(c) f is lower semicontinuous, C = cl(C), Ry (dom f —C) = —cl(Ry (dom f — C)),
and X is complete.

Proof. Suppose X € C is such that 0 € df(X) + N(C,X). Let * € df(¥) be such
that —x* € N(C,x). Then f(x) is finite and for all x € C, one has f(x) — f(x) >
(x*,x —X) > 0: X is a solution to (%).

The necessary condition stems from the relations 0 € d(f + 1c)(X) = df(xX) +
1¢(x), valid under each of the assumptions (a)—(c). O

One can also give a necessary and sufficient optimality condition that does
not require additional assumptions. For simplicity, we restrict our attention to the
case that X is reflexive, although the general case is similar, using nets and weak”
convergence instead of sequences and strong convergence.

Theorem 3.80. A necessary and sufficient condition for X € C to be a solution to
(€) is that there exist sequences (xn), (wy) =X, (Wh), (x3) such that (f(x,)) — f(X),
(Wi +23) = 0, ([lwn = xall -(Iwy [+ b2 1)) = 0, w € C Wiy € N(C, ), X3, € 9 f ()
foralln € N.

Proof. The condition stems from the fuzzy sum rule used in transcribing the
inclusion 0 € J(f + 1¢)(X) that characterizes X as a minimizer of g 4 1¢. Let us
give a direct proof of sufficiency. Given sequences as in the statement, noting that

| (X = 2n) — (Wi wn — )| < [lw, 5, [| (x4 [[wal]) + (125, ]| - [lxn = wal[ =0,
for all x € C, we get, since w; € N(C,w,,) forall n € N,
S) 2 Hminf(f () + (6,0 =) = f(X) +liminf((—w,,x —wa)) > f(X),

so that X is a solution to (). O

In order to apply the conditions of Theorem 3.79 to the important case in which
C is defined by inequalities, let us give a means to compute the normal cone to C
in such a case. We start with the case of a single inequality, generalizing the second
example of this subsection.

Lemma 3.81. Ler g: X — R.. be a convex function and let C:= {x € X : g(x) <0},
¥ € g 1(0). Suppose C' := {x € X : g(x) < 0} is nonempty and g is continuous at
each point of C'. Then for x' € C' one has N(C,x') = {0} and N(C,x) = R .dg(%).



244 3 Elements of Convex Analysis

Proof. For all X' € C’ the set C is a neighborhood of X, so that N(C,x") = {0}.
The inclusion N(C,%) D R dg(x) is obvious: given r € R and X¥* € dg(¥), for all
x € Cone has (1i7*,x — %) < r(g(x) — g(¥)) <0, hence rx* € N(C,X).

Conversely, let ¥* € N(C,x) \ {0}. The interior of C is nonempty, since it
contains C’. Since (¥*,x) < (x¥*,%) for all x € C, we have (¥*,x) < (¥*,x) for
all x € int(C) (otherwise, ¥* would have a local maximum, hence would be 0).
In particular, g(x) < 0 implies (x*,x) < (¥*,%). Thus g(x) > 0 for all x such that
(x*,x) > (x¥*,%). Therefore X is a minimizer of g on D := {x € X : (x*,x) > (x*,%)}.
Since g is continuous at X € D, we have 0 € dg(X) + N(D,X) by assertion (a) of the
preceding theorem. But the second example of the present section, with g := —x",
¢ := (—X",X), ensures that N(D,X) = —RX". Since 0 ¢ dg(X) because ¥ is not a
minimizer of g, we get some s > 0 such that s¥* € dg(¥), hence ¥* € s~ 'dg(x). O

The case of a finite number of inequalities is a consequence of Lemma 3.81 and
of the following rule for the calculus of normal cones.

Lemma 3.82. Let Cy,...,Cy be convex subsets of X and letx € C:=C;N---NCy.
Then

N(C,x) =N(C1,X)+ -+ N(Cy,X)

whenever one of the following assumptions is satisfied:
(a) There exist j € {1,...,k} and some z € Cj that belongs to intC; for all i # j;
(b) X is a Banach space, Cy,...,Cy are closed, and for D :={(x,...,x) :x € X},
P:=Cy X --- X Cy, the cone R, (P — D) is a closed linear subspace of X*.

Proof. Assumption (a) ensures that d(i¢c, +--- +1¢, ) (X) = dic, (X) +--- + dig, (%),
since for i # j the function 1, is finite and continuous at z € domic;. The Attouch—
Brézis theorem gives the conclusion under assumption (b), since if A is the diagonal
map x + (x,...,x) from X into X¥, one has C = A~!(P), hence 1¢ = tpo A and

e (%) =AT(d1p(X)) = AT(d1c, (X) x --- x dig (X)) = dic, (X) +-- -+ d1c, (X),
as is easily checked. O

The next example shows the necessity of requiring some additional assumptions,
traditionally called “qualification conditions.”

Example. Fori= 1,2, let C; := Blc;, 1] with ¢; := (0,(—1)") in X := R? endowed
with the Euclidean norm. Then C := C; NC, = {x}, with X := (0,0), hence N(C,x) =
X*, but N(C;,X) = {0} x (—1)"*'R and N(C},X) + N(C>,%) = {0} x R. O

Lemma 3.83. Let g;: X — Ro. be convex, let C;:= {x € X : gi(x) <0} foriel:=
{1,...,k}, letxe C:=CN---NCy, and let I(X) := {i € I : g;(X) = 0}. Suppose that
foralli e I\I(X), g is continuous at X and that for all i € I(X), g; is continuous on
Cl:={x € X : gi(x) < 0}. Suppose there exists some xy € C; for all i € I(X). Then
Sforx* € X*, one has X* € N(C,X) if and only if there exist yi, ...,y in Ry such that

X €y1dgi(®) 4 +ydg(®),  y181(X) =0,...,y8(X) =0. (3.65)
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Proof. The sufficient condition is immediate: if X* = y1X] + --- + y,x; with X] €
dgi(X) and y; € Ry with y;g;(x) = 0, for all x € C we get (x*,x —X) <0, since the
sum of the terms y; (X7, x —X) is less than or equal to 0, since x € C; and X} € dg;(X).

Let us suppose now that x* € N(C,X). For i € I'\ I(X), since g; is continuous
at X and g;(x¥) < 0, one has X € int(C;), hence N(C,x) = N(C',X), where C' is
the intersection of the family (C;) for i € I(X). Given xq € C! for all i € I(x), for
t€(0,1) letx; := (1 —t)xo +1x. i € I(X) we have g;(x;) < (1 —1)gi(x0) +1g(X) =
(1 —1)gi(x0) < 0, and since g; is continuous on C;, we have x; € int(C;). Thus
Lemma 3.82 yields some w; € N(C;,X) such thatX* = wj +---+wj (withw; =0 for
i € I\I(X)). For i € I(x), Lemma 3.81 provides some y; € R; and some X} € dg;(¥)
satisfying w; = y;x;. Since for i € I \ I(X), g; is continuous at X, we can write
wi =yix; with y; =0, X; arbitrary in dg;(x), which is nonempty by Theorem 3.25.
Thus relation (3.65) holds. O

This characterization and Theorem 3.79 give immediately a necessary and
sufficient optimality condition for the mathematical programming problem

(#) minimizef(x) subjectto x€ C:={x€X:gi(x) <O0,...,g(x) <0},

where f and g1,..., g are as above.

Theorem 3.84 (Karush—-Kuhn-Tucker theorem). Let f: X — R.., g1,...,81 be
as in the preceding lemma and let X € C. Suppose f is continuous at X and the Slater
condition holds: there exists some xo € dom f such that g;(xo) < 0 for i € I(X). Then
X is a solution to (.#) if and only if there exist y|,...,V; in R, such that

0€df(X)+51981(X) + -+ +3Igk(x), ¥181(X) =0,....n8X) =0.
Introducing the Lagrangian function ¢ by
Clx,y) = by(x) == f(0) +y1g1(x) +--- +mge(x),  x€X, yeRE,
and the set K(¥) of Karush—Kuhn-Tucker multipliers at X,

KX :={y:=01,-.., ) € Ri, 0 € dly(x), y.g(xX) =0},

the above condition can be written y € K (). Here we use the fact that y,;(x) <0
for all , so that 3,81 (X) + --- + ¥rgx(X) = 0 is equivalent to ¥;g;(X) = 0 for all i;
we also use the continuity assumption on the g;’s at X. Thus in order to take the
constraints into account, the condition 0 € d f(¥) of the unconstrained problem has
been replaced by a similar condition with ¢y instead of f. Despite this justification,
the multipliers y; seem to be artificial ingredients (in [819], by analogy with the
theater, they were given the name deus ex machinae). However, they cannot be
neglected, as shown by Exercise 1 below, even if in solving practical problems one is
led to get rid of them as soon as possible. In fact, the “marginal” interpretation we
provide below shows that their knowledge is not without interest, since they provide
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useful information about the behavior of the value of perturbed problems. In order to
shed some light on such an interpretation, let us introduce for w := (wy,...,w;) € R*
the perturbed problem

(A,,) minimizef(x) subjectto x€C,:={xeX:gi(x)+w;<0, i=1,... .k}
and set G := {(x,w) € X x RF: g1 (x) +w; <0,...,gx(x) +wx <0},
p(w) :=inf{f(x) : x € Cy}.

Since p(w) = infyex P(w,x), with P(w,x) := f(x) + tg(x,w), p is convex, G and P
being convex.
Let us also introduce the set M of Lagrange multipliers:

M= {y eRE Hinf f(x) = inféy(x)} .

xeX

Theorem 3.85. Suppose p(0) is finite. Then the set M of Lagrange multipliers
coincides with dp(0). Moreover, for all X in the set S of solutions to (.#') one has
K(x)=M.

It follows that the set K () is independent of the choice of X in S.

Proof. Let y € M. Given w € R, then for all x € C,, and i = 1,...,k, we have
vigi(x) < —y;w;, since y; € Ry and g;(x) < —w;. Thus by definition of M,

p(0) = inf £y(x) < inf f(x) = (nw) < xiergvf (x) = (yw) = p(w) — (y,w),

so that y € dp(0).

Conversely, assume that the functions g; are finite and let y € dp(0). We first
observe that y € R% | since for w € RE. we have C C C_,,, hence p(—w) < p(0), so
that taking for w the elements of the canonical basis of R¥, the inequalities (y, —w) <
p(—w) — p(0) < 0 imply that the components of y are nonnegative. Now, given
x € X, either y;gi(x) = +oo for some i and £,(x) > p(0), else taking w; := —g;(x) for
i=1,...,k, one has x € Cy, hence f(x) > p(w) and

F(x) +(y,8(x)) = p(w) + (v,8(x)) = p(0) + (y,w) + (»,8(x)) = p(0),

so that infycx £, (x) > p(0). Since for x € C one has (y, g(x)) < 0, hence infycx £, (x) <
infyec ly(x) < infrecf(x) = p(0), we get infycx £,(x) = p(0), hence y € M.

Finally, let X € S and let y € K(X). Then since 0 € d/y(X) or £3(X) = inf,ex f3(x)
and y- g(¥) = 0, we have /3(X) = f(X) = infycc f(x) and we get y € M. Conversely,
let y € M. Then f(X) = p(0) = infyex £5(x) < 45(%), so that y- g(X) > 0. Since for
all i = 1,...,k we have J; > 0 and g;(X) < 0, the reverse inequality holds; hence
y - g(X) = 0. Moreover, the relations inf.cx 5(x) = p(0) = f(X) = {3(X) imply that
0 € d/5(X). Therefore y € K(%). O
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The bearing of multipliers on the changes of p can be made more explicit [692].

Corollary 3.86. Let w, w € R¥ and let y, y' be multipliers for the problems of
minimizing f(x) under the constraints g(x) +w < 0 and g(x) +w' < 0 respectively.
Then the values p(w) and p(w') of these problems satisfy the relations

W —w) <p(wW') —p(w) < O/, W' —w).

Proof. Givenw € R¥, leth:x+ g(x)+wandletq:z > inf{f(x): h(x)+z<0}.Ify
is a multiplier for this problem, one has y € d¢(0), so that for w’ € R¥, z:=w' —w,

W' —w) = (y,2) < q(z) —q(0) = p(W') — p(w).

Interchanging the roles of w and w/, we get the second inequality. O

Exercises

1. (a) Compute the normal cone to R;..

(b) Given a convex function f : R — R, give a necessary and sufficient condition
for it to attain its minimum on C := {x € R: —x < 0} at 0. Taking f(x) = x, check
that the condition f7(0) = 0 is not satisfied.

(¢) Compute the normal cone to R’} at some X € R}

2. Show that the sufficient condition of the Karush—-Kuhn—Tucker theorem holds
without the Slater condition and continuity assumptions.

3. State and prove a necessary and sufficient optimality condition for a program
including equality constraints given by continuous affine functions.

4. (a) Use the Lagrangian £ : X x R¥ — RU{—oco, +o0} given by

Ox,y) = {f(x)+Y1g1(X)+---+ykgk(x) if (x,y) € X x R’;,
7 —e° if (x,y) € X x (RF\RA),

to formulate optimality conditions for the problem (.#).

(b) Introduce a Lagrangian ¢ : X x ¥ — R adapted to the problem of minimizing a
convex function f under the constraintx € C:= {x € X : g(x) € —=Z, }, where Z. is
a closed convex cone in a Banach space Z and g : X — Z is a map whose epigraph
E:={(x,2) XX Z:z€ Z; +g(x)}is closed and convex.

5. Let X :=R,let f: X - R, g: X — R be given by f(x) := —x% for x € R,
with o € (0,1), f(x) := +eo for x < 0, g(x) = x for x € R. Show that there is no
Karush—Kuhn—Tucker multiplier at the solution of (.#') with such data.
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6. (Minimum-volume ellipsoid problem) Let (¢y,...,e,) be the canonical basis
of R” and let §"} | be the set of positive definite matrices of format (n,n).
(a) Show that the identity matrix / is the unique optimal solution of the problem

Minimize — logdetu, wueS",, |u(e)|*—1<0, i=1,...,n.

[Hint: Use Theorem 3.84 and some compactness argument; see [126, pp. 32, 48].]
(b) Deduce from (a) the following special form of Hadamard’s inequality: for u €
S" . and u; := u(e;), one has det(ui,...,u,) < ||ug]-- - ||un||.

7. Characterize the tangent cone to the positive cone L, (S) of L,(S) for p € [1,0),
S being a finite measured space. [See [226].]

3.6 Smoothness of Norms

In order to choose the space on which we state a given problem (when it is possible)
and the substitute for the derivatives of functions, we need to know whether a space
has sufficiently many smooth nontrivial functions. In particular, it is useful to know
whether a power ||-||” (p > 1) of the norm is smooth.

In order to give some versatility to the following famous differentiability test for
a norm, we adopt the framework of normed spaces in metric duality. Let us recall
that two normed spaces are said to be in metric duality if there exists a continuous
bilinear coupling ¢ := (-,-) : X X ¥ — R such that ||y|| = sup{(x,y) : x € Bx } for all
y €Y and ||x|| = sup{(x,y) : y € By} for all x € X. Such a presentation enables us
to treat simultaneously the case in which Y is the dual of X and the case in which
X is the dual of Y. We say that a sequence (y,) of Y c-weakly converges (or simply
weakly converges) to y € Y if for every x € X we have ((x,y,)) — (x,y). This notion
coincides with weak™ convergence when Y := X* and with weak convergence when
X:=Y"

Proposition 3.87 (Smulian test). Let X and Y be normed spaces in metric duality
and let X € Sx. The following assertions (a) and (b) are equivalent, and if Y is the
dual of X, then (a), (b), and (c) are equivalent:

(a) The norm of X is Fréchet (resp. Hadamard) differentiable at X;

(b) Forevery pair of sequences (yy), (zn) of Sy such that ((X,y,)) — 1, ((%,z0)) — 1,
one has (||yn — za||) = O (resp. (yu — zn) c-weakly converges to 0);

(c) A sequence (y,) of Sy is convergent (resp. c-weakly convergent) whenever

((X,yn)) — 1.

Proof. (a)=-(b) Suppose the norm ||-|| of X is Hadamard differentiable at X € Sx.
By Lemma 3.30, for every given € > 0 and any u € Sy there exists some § > 0 such
that ||X +rul| + ||X —tu|| <2+ et whent € [—6,6]. Let (y,) and (z,) be sequences
of Sy such that ((x,y,)) — 1 and ((X,z,)) — 1. Then for ¢ := , one can find k € N
such that for all n > k one has
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f<’4=yn _Zn> — <x+tuuyﬂ> + <X—tu,zn> - <xuyﬂ> - <X,Z”>
< |NT+ tul| + [[F— ru]] — 2+ 28 < 3.

Thus (u,y, —z,) < 3€ for n > k. Changing u into —u, we see that ({u,y, —z,)) — 0.
The Fréchet case is similar, using uniformity in u € Sx.

(b)=-(a) Suppose the norm ||-|| of X is not Hadamard differentiable at X € Sx.
By Lemma 3.30 there exist some u € Sy, some € > 0, and some sequence (f,) — 04
such that ||X 4 t,u|| + ||X — tyu|| — 2 > 31,¢€ for all n. Let us pick yp, z, in Sy such that

X+ tau,yn) > [T+ tqul| —the, (X —taut,z0) > || X — taul| — 12€. (3.66)

Then (X,y,) > |X+ tqul|| — tn€ — t,||u]| - ||yn]| and (%, y,) < 1, so that ((X,y,)) — 1,
and similarly, ((x,z,)) — 1. Since ||X|| = 1, ||[ya]| = 1, [|z.| = 1, we get

tn<u7)’n _Zn> = <)_C+tnuuyn> + <x_tn”uzn> - (X,y,,) - <X7Zﬂ>
2 [[%+ tau||+ X — tue] — 2t — [|%[| . |lyall — [X]] - |2n]| = tnE,

and hence (u,y, —z,) > €, a contradiction to the assumption that (y, — z,) c-weakly
converges to 0.

When the norm ||-|| of X is not Fréchet differentiable at X € Sy, one can find
€ > 0 and sequences (t,) — O, (u,) in Sx such that ||X + t,u, || + ||X — tyun|| —2 >
3t,€ for all n € N. Then taking (y,), (z,) € Sy as in relation (3.66), the preceding
computation reads (u,,y, — zn) > €, hence ||y, —z|| > €, a contradiction to the
assumption that (y, — z,) — 0.

(b)=(c) when ¥ = X*. Let y := ||| (¥). One has |[3|| < 1, since the norm is
Lipschitzian with rate 1 and, by homogeneity, (x,y) = lim, ,o(1/t) (||x+ x| —
IIX]|) = 1, so that y € Sy and we can take z, := ¥ in assertion (b). Thus (c) holds.

(c)=-(b) when Y = X*. Let (yn), (z,) be sequences of Sy such that ((x,y,)) — 1,
({(x,zn)) — 1. Let w, =y, when n :=2p, w, =z, when n := 2p+ 1. Then
({x,wn)) — 1, so that by (c), (w,) converges (resp. c-weakly converges). Thus
(yn — zn) — 0 (resp. c-weakly converges to 0). O

The following notions will appear as dual to differentiability of the norm.

Definition 3.88. A norm ||-|| on a vector space X is said to be rotund (or strictly
convex) if every point u of its unit sphere Sy is an extremal point of the unit ball
By in the sense that it cannot be the midpoint of a segment of By not reduced to a
singleton.

It is said to be locally uniformly rotund (LUR), or locally uniformly convex, if for
all x, x,, € X satisfying (||x,]|) — ||x||, (||x+x»]|) — 2||x|| one has (x,) — x.

Let us exhibit some characterizations of these properties.
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Lemma 3.89. For a normed space (X, ||-||) the following assertions are equivalent:

(a) ||| is rotund;

(b) If x,y € Sx satisfy Hx—i—yu =2, thenx=y;
(c) Ifx,y € X satisfy ||x+y||° = 2||x|* +2|]y|*, then x = y;

(d) Ifx,y € X\ {0} satisfy ||x+y|| = ||x|| + ||y||, then x = Ay for some A € R,.

Proof. (a)<>(b) is a reformulation, since ||x+ y|| = 2 means that § (x+) € Sx.
(c)=-(b) is immediate. (b)=-(c) For x, y € X, since

2 2 2 2 2
2|l + 2 Iy l1* = e +y11% 2> 2 el + 2y = (el + iD=l = 11y 112,

the relation 2 ||x||* +2[|y||* — [|x+ y||* = 0 implies ||x|| = ||y||. Setting x := ru, y := rv
with r:= ||x|| = ||yl|, u,v € Sx, for r > 0 we get ||u+ v|| =2, so thatu = v and x =y,
whereas for r =0 we have x =y = 0.
(b)=(d) Suppose [|x+y|| = [|x][ + [lyl| and r := [lx[| <'s := |y[|. Then
2> "r71x+s71y" >l [lx 4y — Hrily—sflyH

—1 —1 -1 —1 -1
=r (Il + Iyl = G =7 vl = 7 el 57 iyl = 2-

Thus |[r~'x+s7'y|| =2 and r~'x = s~ 'y. (d)=>(b) is immediate. O
Lemma 3.90. For a normed space (X,||-||) the following assertions are equivalent:

(a) ||| is locally uniformly rotund;
(b) If x,x, € Sx for n € N satisfy (||x+ x4||) — 2, then (x,) — x;
(¢c) If x,x, € X satisfy (2||x]|* +2|[xa]|* = [lx+xu]1*) = O, then (x,) — x.

Proof. (a)=-(b) is obvious. The converse is obtained by considering (in the nontriv-
ial case x # 0) u :=x/ ||x||, uy := x/ ||x4]| (for n large enough).
(c)=-(b) is immediate. (b)=-(c) For x, x,, € X, since

2 2 2 2 2 2 2
2 el 2 el = [l xall™ = 2 lel|* 4+ 2 flea [ = ([l + e ll)™ = Cllell = [leal )7,

the relation Tim,, (2||x]|* + 2 [|x,||* — [|x + x,[|*) = 0 implies (||x,]|) — [|x]|. (c) fol-
lows by considering (x, / ||x,]|- O

The LUR property has interesting consequences, as the next proposition shows.

Proposition 3.91. If ||-|| is a LUR norm, then X has the (sequential) Kadec—Klee
property: a sequence (x,) of X converges to x € X whenever it weakly converges to
x and (||xal) = [1x]-

Proof. Let x € X and let (x,),es be a weakly convergent sequence whose limit x
is such that (||x,||) — |lx||. Then limsup, ||x +x,|| < limsup, (||x|| + ||x.|]) = 2|x]|.
On the other hand, since the norm is weakly lower semicontinuous, we have
liminf, |x +x,|| > ||2x||. Thus (||x+x,||) — 2||x||, and since the norm is LUR, we
get (x,) — x. O
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Let us turn to duality results.
Proposition 3.92. Let ||| be a norm on X and let ||-||, be its dual norm.

(a) If |||, is a rotund norm, then ||| is Hadamard differentiable on X \ {0}.
(b) If |||, is Hadamard differentiable on X*\ {0}, then ||-|| is a rotund norm.

In particular, a compatible norm on a reflexive Banach space X is Hadamard
differentiable on X \ {0} if and only if its dual norm is strictly convex.

Proof. (a) By Corollary 3.26, it suffices to show that for every x € X \ {0},
S(x) =91 (x) = {x" € X™ X[, = 1, (", x) = [|x[|}

is a singleton. Let x*,y* € S(x). Then 2 ||x|| = (x*,x) + (", x) < [|lx* +y*|, - ||Ix]]
< 2|x||, and by assertion (b) of Lemma 3.89, we have x* = y*.

(b) If ||-|| is not rotund, one can find x,y € Sx such thatx # y and (1 —#)x+ty € Sx
for all r € [0,1]. Taking ¢ := 1/2 and f € Sy« such that f((1 —t)x+1y) =1, we
see that 1 = f((1 —t)x+ty) = (1 —1)f(x) +1f(y) < 1, so that this inequality is
an equality and f(x) = f(y) = 1. Viewing x and y as elements of X**, we have
x,y € d|||. (f), so that ||-||,. is not differentiable at f. O

Proposition 3.93. Let (X, ||-||) be a normed space. If the dual norm ||-||, is LUR,
then ||-|| is Fréchet differentiable on X \ {0}.

Proof. We use Smulian test (c). Let x € Sx. Using a corollary of the Hahn—Banach
theorem, we pick f € Sx- such that f(x) = 1. Let (f,) be a sequence of Sx+ such
that (f,(x)) — 1. Since

2> ||f+ fall, = (f + fu) (x) = 2,

we have limy, (2 || f12+2 || £ull> = £ + ful|?) = 0; hence by the LUR property, (f,,) —
f- Then by Proposition 3.87, ||-|| is Fréchet differentiable at x, hence on (0, 4o0)x.
O

So, it will be useful to detect when a norm on the dual of X is a dual norm.

Lemma 3.94. An equivalent norm ||-|| on the dual X* of a Banach space X is
the dual norm of an equivalent norm ||-||y on X if and only if it is weak* lower
Semicontinuous.

Proof. If ||| is the dual norm of an equivalent norm ||-||, then [|-|| = sup{(x,-) :x €
X, ||x||y = 1} is weak™ lower semicontinuous as a supremum of weak™* continuous
linear forms.

Conversely, if ||-|]| is weak® lower semicontinuous, its unit ball B* is convex,
weak* closed, hence coincides with its bipolar. Then one can see that ||-|| is the dual
norm of the Minkowski gauge of the polar set of B*, a compatible normon X. O

The following renorming theorem is of interest. We refer to [98, p. 89], [289],
[292, p. 113], [376, Theorem 8.20] for the proof of its second assertion.
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Theorem 3.95. (a) Every separable Banach space X has an equivalent norm that
is Hadamard differentiable on X \ {0}.

(b) Every Banach space X whose dual is separable has an equivalent norm that
is Fréchet differentiable on X \ {0}.

Proof. (a) Let (e,)nen be a countable dense subset of By. Define a norm by

. 1/2
2 — *
1A= {llflo+ X 2 ”fz(en)] ; fexs,
n=0
where |||, is the original norm of X*. The norm ||-|| is easily seen to be weak®

lower semicontinuous, so that it is the dual norm of some norm |||, on X.
In view of Lemma 3.92, it suffices to show that |||L is rotund. Let f,g € X*
be such that |[f+g| = 2|[£[> +2lg|]>. Since 2|\ +2lg]3 > £+ g} and
212 (en) +2g%(en) > (f 4 g)%(e,) for all n, we get that these last inequalities are
equalities, so that (f — g)%(es) = 2f%(en) +28%(en) — (f +£)*(en) = 0 for all n.
Thus f(e,) = g(e,) for all n, and by density, f = g. O

Exercises

1. Using the Smulian test, show that if the norm of a normed space is Fréchet
differentiable on X \ {0}, then it is of class C' there.

2. Show that a normed space X is strictly convex if and only if each point x of its
unit sphere Sy is an exposed point of the unit ball By, i.e., for each x € Sx there
exists f € X* such that f(x) > f(u) forall u € Bx \ {x}.

3. Let S be a locally compact topological space and let X := Cy(S) be the space of
bounded continuous functions on S converging to 0 at infinity: x € Co(S) iff x(-) is
bounded, continuous on S, and if for every € > 0, one can find a compact subset K
of S such that sup |x(S\ K)| < €.

(a) Show that the supremum norm ||-||, is Hadamard differentiable at x € X if and
only if My :={s € S: |x(s)| = ||x]|.} is a singleton.

(b) Show that ||-||., is Fréchet differentiable at x € X if and only if M, is a singleton
{5} such that 5 is an isolated point of S. (See [289, p. 5].)

4. LetX :=/(I) be the space of absolutely summable families x := (x;);c; endowed
with the norm ||x||; := Y7 |xil-

(a) Show that ||-||; is nowhere Hadamard differentiable if / is uncountable.

(b) If 1 := N, show that ||-||, is Hadamard differentiable at x if and only if x; # 0 for
alliel.

(c) If I := N, show that ||-||, is nowhere Fréchet differentiable. (See [289, p. 6].)

5. A normed space (X,||-||) is said to be uniformly smooth if the function oy :
R4 — R given by
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ox (t) := sup{ (1/2)(llxc+ tue]| + [loc — rual|) — [|x]| : o, € Sx }

is a remainder (i.e., ox(¢)/t — 0 ast — 04).

(a) Show that (X, |-||) is uniformly smooth iff ||-|| is uniformly differentiable on Sx.
(See [376].)

(b) Show that if (X,]|-||) is uniformly smooth then the derivative S of the norm
satisfies

[15G) = SII < ox (2 e/ 1xll = v/ I 1D 1/ [l = »/ 1I¥1
forx,y € X\ {0}.

6. A normed space (X,]|-||) is said to be uniformly rotund if for every pair of
sequences (x,), (y») of Bx such that (||x, 4 y,||) — 2 one has (||x, —y,[|) — 0.
(a) Show that (X, ||-||) is uniformly rotund iff yx : R — R.. given by

Y (s) = inf {1 —[|(1/2)(x+y)[|: 2,y € Sx, [(1/2)(x =) | = s}, s€[0,1],

Yx (s) := 4o for s € R\ [0,1] is a gage, i.e., (s,) — 0 whenever (yx(s,)) — 0.
(b) Show that s — 7y (s) /s is nondecreasing. (See [394].)
(c) Show that (X,]|-]|) is uniformly rotund iff X* is uniformly smooth and

ox+(t) =sup(st — yx(s)), ¢>0.

t>0

(d)] Show that (X,|-||) is reflexive if it is either uniformly rotund or uniformly
smooth.

7. Show that the space X := L,(S,u) (p > 1) is uniformly rotund and uniformly
smooth with
¥ (s) = (p—1)s*/2+0(s*) forpe (1,2),%(s) = s"/p+o(s”) for p > 2,
ox(t)=t"/p+o(t?) forpe (1,2], ox(t) = (p—1)t*/2+0(t?) for p > 2.

(See [79,467].)

3.7 Favorable Classes of Spaces

We need to single out classes of Banach spaces on which continuous convex func-
tions have sufficiently many points of differentiability. That justifies the following
definition.

Definition 3.96. A Banach space X is called an Asplund space (resp. a Mazur
space) if every continuous convex function f defined on an open convex subset
W of X is Fréchet (resp. Hadamard) differentiable on a dense ¥ subset D of W.
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These terminologies are not the original ones: initially, Asplund spaces were
called differentiability spaces, and usually Mazur spaces are called weak Asplund
spaces.

By Theorem 3.34, separable Banach spaces are Mazur spaces. A stronger
separability assumption ensures that the space is Asplund.

Theorem 3.97. A Banach space X whose dual is separable is an Asplund space.

Proof. Let f be a continuous convex function on an open convex subset W of X.
Forall x € W let g, € df(x) and 8(x) :=d(x,X \ W). The set A := W \ F of points
of W at which f is nondifferentiable is the union over m € N\ {0} of the sets

Ap ={xeW:Vre(0,6(x)) IverBx, f(x+v)—f(x)—g(v) > (6/m)|v|l}

Since X™* is separable, for all m € N\ {0} there is a countable cover %y, := {Bm :
n € N} of X* by balls with radius 1/m. Let Ay, , := {x € A;y : gx € Byn }. Since W
is a Baire space, and since A is the union of the sets A, ,, it suffices to show that the
closure of A, , in W has an empty interior. Given an element w of this closure, let us
show that for every € € (0,8(w)), the ball B(w, €) is not contained in the closure of
Ay, in W. We will show that there exists some y € B(w, €) that has a neighborhood
V disjoint from A, ,,. Without loss of generality, taking a smaller € if necessary, we
may suppose f is Lipschitzian on B(w,¢€) with rate k for some k > 1/m. Since w
is in the closure of A, ,, we can find some x € A, , NB(w,€). By definition of A,,,
taking r € (0,& — d(w,x)), there exists v € rBx such that

St v) = f(x) > ge(v) + (6/m) |Iv]]. (3.67)

We will show that for y := x+v, s := ||v||, V := B(y,s/km) N B(w,€) € A (y), we
have VNA,,, = @. Suppose, to the contrary, that one can find some z € VNA,, .
Then by definition of A,, ,, we have ||g, — g|| < 2/m, and since g, € df(z),

f(x) = f(2) = g-(x—2).
Combining this inequality with relation (3.67), we obtain
Fx+v) = f(2) 2 gu(v+x—2) —gulx—2) + g(x—2) + (6/m) [[v]|.  (3.68)

Since ||[v+x—z|| = |y —z| < s/km and ||g«|| < k, we have |g:(v+x—2)| < s/m.
Moreover, the inequalities |lx—z|| = [y —v —z|| < [ly —zl[ + [[v[]| < s/km+s < 2s,
lgx(x —2) — g:(x —2)| < 2s]|gx — g2|| < 4s/m, and (3.68) yield

fctv) = f(2) > —s/m—4s/m+(6/m) |v]| = s/m,

a contradiction to the inequality |[v+x — z|| < s/km and the fact that f is Lipschitz-
ian with rate k on the ball B(w, €), which contains both y := x+ v and z. O

The importance of Asplund spaces for generalized differentiation is illuminated
by the following deep result, which is outside the scope of this book.



3.7 Favorable Classes of Spaces 255

Theorem 3.98 (Preiss [850]). Every locally Lipschitzian function f on an open
subset U of an Asplund space is Fréchet differentiable on a dense subset of U.

The class of Asplund spaces can be characterized in a number of different
ways and satisfies interesting stability and duality properties. In particular, it is
connected with the Radon—Nikodym property described below. Let us just mention
the following facts in this connection, referring to [98, 289, 832] for proofs and
additional information.

Proposition 3.99. (a) A Banach space X is an Asplund space if and only if every
separable subspace of X is an Asplund space.

(b) A Banach space X is an Asplund space if and only if the dual of every
separable subspace of X is separable.

In particular, every reflexive Banach space is an Asplund space. On the other
hand, C([0, 1), L; ([0, 1]), ¢1(N), and ¢..(N) are not Asplund spaces.
Let us state some permanence properties.

Proposition 3.100. (a) The class of Asplund spaces is closed under isomorphisms;
that is, if X and Y are isomorphic Banach spaces and if X is Asplund, then Y is
Asplund.

(b) Every closed linear subspace of an Asplund space is an Asplund space.

(c) Every quotient space of an Asplund space is an Asplund space.

(d) The class of Asplund spaces is closed under extensions: if X is a Banach space
and Y is an Asplund subspace of X such that the quotient space X /Y is Asplund,
then X is Asplund.

Corollary 3.101. If X is an Asplund space, then for all n € N\ {0}, X" is an
Asplund space.

Proof. Let us prove the result by induction. Assume that X" is Asplund. The graph

Y of the map s : (x1,...,X,) — X1 + - -+ + X, is isomorphic to X", hence is Asplund
by assumption. The quotient of X”*! by Y is isomorphic to X, since s is onto. Thus
X"+ is Asplund. 0

The following result clarifies the relationships between Asplund spaces and
spaces that can be renormed by a Fréchet differentiable norm. It will be explained
and proved in the next chapter (Corollary 4.66).

Theorem 3.102 (Ekeland-Lebourg [352]). If a Banach space can be renormed
by a norm that is Fréchet differentiable off O (or more generally, if it admits a Fréchet
differentiable bump function), then it is an Asplund space.

For separable spaces, there is a partial converse, but in general the converse fails:
R. Haydon has exhibited a compact space T such that C(T') is Asplund but cannot
be renormed by a Fréchet (or even Gateaux) differentiable norm.

Proposition 3.103. For every separable Asplund space X there exists a norm
inducing the topology of X that is Fréchet differentiable on X \ {0}.
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Proof. This is a consequence of Proposition 3.99 and Theorem 3.95. O

On the other hand, on any Banach space that is not Asplund, one can find a
Lipschitzian convex function that is nowhere differentiable. One can even take for
it an equivalent norm, as explained in the next proposition. In order to prove this
and give a dual characterization of Asplund spaces, let us define a weak™ slice of a
nonempty set A C X* as a subset of A of the form

S(x,A,0) ={x" €A : (x",x) > 0a(x) — o},
where x € X \ {0}, a > 0, and where oy is the support function of A:
04 (x) = sup{(x",x) : x* € A}.

The subset A is said to be weak* dentable if it admits weak™ slices of arbitrarily
small diameter. The space X* is said to have the dual Radon—Nikodym property if
every nonempty bounded subset A of X* is weak™* dentable. This property is impor-
tant in functional analysis, in particular for vector measures (see [98,832,941]).

Theorem 3.104 ([832, Theorem 5.7]). A Banach space X is an Asplund space if
and only if its dual space X* has the dual Radon—Nikodym property.

The following proposition shows the implication that the dual of an Asplund
space has the dual Radon—-Nikodym property. We omit the reverse implication.

Proposition 3.105. Let (X, ||-||) be a Banach space whose dual space does not have
the dual Radon—Nikodym Property. Then there exist ¢ > 0 and an equivalent norm
|l on X such that for all x € X,

1
limsup — ([lx+w|'+ [lx—=w|" = 2|lx]|") > c. (3.69)
w—0, w#0 H ”

In particular |-||' is nowhere Fréchet differentiable.

Proof. Since X* does not have the dual Radon—-Nikodym property, there exist ¢ > 0
and a nonempty bounded subset A of X* whose weak* slices have diameter greater
than 3c. In particular, for all x € X \ {0}, the weak™ slice S(x,A, c) of A has diameter
greater than 3c. Let us pick y*,z* € S(x,A, ¢) such that |[y* —z*|| > 3c. We can find
u € Sx such that (y* — z*,u) > 3c. Because the definition of S(x,A,c) C A ensures
that (y*,x) > 04 (x) — ¢, (z",x) > 0a(x) — ¢, we get

oa(x+u)+os(x—u) > " x+u)+ (" x—u)

o
> (0a(x) —c+ (")) + (0a(x) —c = (z",u))
>204(x) + (V" —7%,u) —2¢ > 204 (x) +c.

Let b > sup{||a]| : a € A}. Since for every sublinear function 4, in particular 4 = ||-||
and h = 0_4, one has h(x+u) + h(x —u) — 2h(x) > 0, we get that ||-||" := b||-|| +
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04 + 0_4 satisfies the announced relation and is a norm equivalent to ||-||. For x =0
and ¢ < 2 this relation is obvious. O

The class we introduce now has much interest in relation to Hadamard derivatives.

Definition 3.106. A Banach space X is a weakly compactly generated space, a
WCG space for short, if there is a weakly compact set O C X such that X coincides
with the closure of span Q (the smallest linear subspace of X containing Q).

Thus any separable space is WCG (take Q = {0}U{n"'x,, n=1,2,...}, where
{x, : n € N} is a dense countable subset of the unit sphere) and any reflexive space
X is WCG (take Q = By). The space ¢;(I) described below is a WCG space iff
I is countable. The space Li(T,u) is a WCG space iff u is o-finite. As noted
above, some important separable (hence WCG) spaces are not Asplund. Though
the definition of a WCG space is purely topological (in contrast to the definition of
Asplund spaces, which is analytic), the two classes have a substantial intersection.
We shall see that the class of spaces that are both WCG and Asplund is a convenient
framework for developing nonconvex subdifferential calculus.

Characterizations of WCG spaces are mentioned in the next theorem. Here, given
a set I, we denote by co(I) the set of families y := (y;);es such that for all r > 0 the
set {i € I : |y;| > r} is finite, and we endow the space co(I) with the norm ||y]|., :=
sup;; |vi| fory := (y;)ics. This space is complete, and the subspace coo (1) := R") of
families y := (y;);c; whose support if finite is dense in ¢o(I), the support of (y;)ies
being the set of i € I such that y; # 0. Thus the dual of ¢¢(I) can be identified
with £;(I), the space of absolutely summable families y := (y;);c; with the norm
y = [Iy[ly := X |yil, the supremum of finite sums ¥ ¢, ‘yj’ over the family of finite
subsets J of 1. Identifying y := (y;)ie; with a function i — y(i) := y;, we see that the
weak topology on ¢ (1) coincides with the topology of pointwise convergence on I.
Taking Q :={e¢; : j € I} U{0}, where e;(i) = 1 if i = j, O otherwise, we see that
co(I) is a WCG space. It is even an archetype of a WCG space:

Theorem 3.107 (Amir-Lindenstrauss [9,258,364]). For a Banach space X the
following properties are equivalent:

(a) X is a WCG space;

(b) There are a reflexive Banach space W and an injective, linear, continuous map
Jj W — X with dense image;

(¢) There exist a set I and an injective, linear, continuous map h : X* — co(I) that
is continuous from the weak™ topology on X* to the weak topology on co(I).

The two facts we need about WCG spaces are the next result and Corollary 3.110.
Theorem 3.108 ([376, Theorems 11.16, 11.20], [447,937]). If X is a WCG space,

then there is an equivalent norm on X that is both locally uniformly rotund and
Hadamard differentiable off the origin.

An important consequence of Theorem 3.107 for our aims is the next result.
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Theorem 3.109 (Borwein-Fitzpatrick [116]). Ler X be a WCG space, let T be a
subset of a topological space P, and let O be a point in the closure of T such that 0
has a countable basis of neighborhoods. If F : T = X* has a bounded image, then
one has
w* —seq— limsup F(r) = w* — limsup F (¢).
t(€T)—0 t(eT)—0
Proof. Let (U,),>1 be a countable basis of neighborhoods of 0. Setting F;, := F(T N

U,) and denoting by F., the set of all weak™ limits of sequences (x};) such thatx} € F,
for all n > 1, we see that the result amounts to the relation

Fo=(cl*(F)

n>1

for every nonincreasing sequence (F,) of bounded subsets of X*. Leth: X* — Y :=
co(I) be a linear continuous injection that is weak* to weak continuous as given by
Theorem 3.107. For n > 1, let H, be the weak closure of i(F,), so that h(cl*(F,)) C
H,. Let r > 0 be such that F;, C rBx+ for all n. Since & induces a homeomorphism
from rBy+ endowed with the weak™ topology onto its image endowed with the weak
topology, the set He. := h(F.) is the set of weak limits of sequences (y,) such that
yn € h(F,) for all n > 1 and it suffices to show that H.. contains the intersection H
of the family (H,), the opposite inclusion being obvious.

Given yo := (yo(i))ier € H, let us construct inductively a sequence (y,) weakly
converging to yo such that y, € h(F,) for all n > 1. Let us start with an arbitrary
element y; of i(F}). Let us assume that yy,...,y,_ have been chosen, and for k €
{0,...,n—1},let Iy := {ij x : j € N} be the support of yi, which is countable. Taking
into account the fact that y is in the weak closure of A(F,), we pick y, := (v, (i) )ics €
h(F,) such that [y,(i) —yo(i)| < 1/nforalli e J, :=1L,oU---UlL, ,_1, where I,,  :=
{iog,--- ing} fork=0,...,n—1.Let us show that (y,) weakly converges to yo. For
i in the union J of the sets J, (for n > 1), it is clear that (y,(i)), — yo(i). Since J
is also the union of the sets I, (for n > 0), for i € I'\ J one has yo(i) =0, y,(i) = 0.
Thus (y,) = yo. O

Taking for F a constant multimap, we get the following consequence.

Corollary 3.110. If B is a bounded subset of the dual of a WCG space X, then for
the weak™ topology the sequential closure of B coincides with the closure of B. In
particular, every sequentially weak™® closed bounded subset of X* is weak™ closed.

Corollary 3.111. The closed unit ball of the dual X* of a WCG space is sequen-
tially compact for the weak™ topology in the sense that every sequence of Bx~ has a
weak® convergent subsequence.

Proof. Given a bounded sequence (xj;) of X*, let F(n) := {x, : p>n} forne N
and let x* be a weak™ cluster point of (x), i.e., a point in cl*(F (n)) for all n € N.
Theorem 3.109 yields a sequence (y’) — x* such that y’ € F(n) for all n. It is the
required subsequence of (x}). O
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In fact, this sequential compactness property is valid in a class of spaces larger
than the class of WCG spaces. We have a general criterion ensuring such a property.

Lemma 3.112. Let T be a compact topological space such that every nonempty
closed subset S of T has a 9s-point s, i.e., a point s € S such that {s} = NSy, where
Sy is an open subset of S. Then T is sequentially compact.

Proof. Let (t,) be a sequence of T. For m € N, let T, := cl({#, : n > m}). Then
S := Ny T, is the set of cluster points of (7,), hence is closed and nonempty.
By assumption, there exist s € S and a sequence (G,) of open subsets of T such that
{s} =NyS,, where S, := G, NS. We may suppose the sequence (G,) is decreasing,
and since 7 is regular, we may even suppose that c1(G, 1) C G, for all n € N. Since
s € G,NT, for all m,n € N, we have G, N {t, : n > m} # &. Therefore, we can
define inductively an increasing sequence (k(n)), of N such that #(,) € G, for all
n. Lett be a cluster point of the sequence (f(,))»- Then ¢ is a cluster point of (1,);
hence ¢ € S and t € N, cl(G,) =N, G,,. Thus t = s and s is the only cluster point of
(tx(n))- It follows that the subsequence (fx(,)) of (#,) converges to s. O

Theorem 3.113 (Hagler, Johnson). Let X be a Banach space such that every
continuous sublinear function on X has a point of Gdteaux differentiability. Then
the closed unit ball Bx~ of X* is sequentially compact for the weak™* topology.

In particular, for every Mazur (or Asplund) space X the dual unit ball Bx+ of X*
is sequentially compact for the weak™* topology.

Proof. In view of the lemma, it suffices to show that every closed nonempty subset
S of the closed unit ball T of X* endowed with the weak* topology has a ¥s-point.
Let & : X — R be the support function of S: &(x) := sup{(x,y) : y € S}. Since h
is a continuous sublinear function, it has by assumption a Gateaux differentiability
point x. Lety := /' (x) and for n € N, let

Gpi={yeT:(xy >hx)—-2""}

Since (x,y) = i'(X) -x = h(X), we have y € S, := G, N S for all n € N and S,, is open
in S. Let us show that N,,S, = {7}. Take z € N,,S,,. Then z € S, (x,z) = h(X), and for
all x € X we have

(x+1x,2) — (X,2) h(X+1x) — h(x)

-y =1 —(x,y) <l —(x,y) =0.
(rz—3) = lim , (.3) < lim . (x,3)
Thus z =, x being arbitrary in X, and y is a ¢s-point of S. a

Combining fuzzy sum rules with Theorem 3.113, one gets other consequences.

Corollary 3.114 (Hagler-Sullivan [460], Stegall [903]). If X has a Gdteaux dif-
ferentiable norm compatible with its topology, or if X has a Lipschitzian Hadamard
differentiable bump function, in particular if X is a subspace of a WCG space, then
the unit ball in X* is sequentially compact for the weak-star topology.
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Exercises

1. Show that the weak topology of a Banach space need not be sequential. [Hint: In
a separable Hilbert space X with orthonormal base (e,,) show that O is in the weak
closure of the set S := {e,, +me, : m,n € N,m < n} but no sequence in S weakly
converges to 0.]

2. (Smulian’s theorem). Prove that every sequence of a weakly compact subset of
a Banach space has a weakly convergent subsequence.

3. Let I be an infinite set and let X := ¢..(I) be the space of bounded functions
on [ with the supremum norm. Show that the unit ball Bx of X* contains a
weak® compact subset that has no weak* convergent sequence besides those that
are eventually constant.

4. Let [ be an uncountable set and let X := /..(I) be as in Exercise 3. Show that the
unit ball Bx+ of X* is weak* compact but not weak* sequentially compact.

5. Show that on the space X := lo := {.(N) of bounded sequences there are
continuous sublinear functions that are nowhere Gateaux differentiable. [Hint: By
Theorem 3.113, it suffices to show that there is a sequence (f,) of By« that has no
convergent subsequence. Define f, by f,(x) := x,, where x := (x,) € {.. Given an
increasing sequence (k(1)) of N, let x := (x) € £ be defined by xy(,) := (—1)" and
xp =0 for p ¢ k(N). Then (fi(,))» cannot weak™ converge, since (x, fy(n)) = (—1)".]

6. Show that the class % of Banach spaces having weak* sequentially compact dual
balls is stable under the following operations: (a) taking dense continuous linear
images; (b) taking quotients; (c) taking subspaces.

[see [293, p. 227]]

7. (Davis-Figiel-Johnson—Pelczynski theorem) Let Q be a weakly compact
symmetric convex subset of a Banach space X. Show that there exists a weakly
compact symmetric convex subset P of X containing Q such that the linear span Y
of P endowed with the gauge of P is a reflexive space.

3.8 Notes and Remarks

A number of important topics of convex analysis have been left aside in the present
chapter: algorithms [75, 497, 711], approximation theory [506, 619], geometric
aspects [99], mechanics [156], optimal control, the study of special classes of convex
sets and functions, in particular polyhedral convex sets, among others. We refer
to the monographs [52, 126, 353, 497, 498, 506, 507, 549, 619, 871, 872] and their
bibliographies for a wider view.

The Fenchel conjugacy appeared in [696]; but it was the lecture notes [389] by
Fenchel and the famous book [871] that made it popular. The lecture notes [735]



3.8 Notes and Remarks 261

were the main starting point of convex analysis in the general setting of infinite-
dimensional spaces; they were followed by [37,39,52,198,353,619,692] and others.

The first results linking coercivity of a function with boundedness of its conjugate
appeared in [23,407,735]. Many researchers have related rotundity of a function to
smoothness of the conjugate; see [61,98,984].

The concise introduction to duality we adopted is a short diversion that does
not reflect the importance of the topic. We refer to [353, 619, 692,711, 872] for
less schematic expositions. In [776, 822] no linear structure is required on the
decision space X and extensions to nonconvex dualities are presented; see also their
references.

The fuzzy (or so-called asymptotic) calculus rules for subdifferentials were
discovered by Thibault in [916] using some previous results of Hiriart-Urruty and
Phelps [500]; more light was shed on this topic in [917,918] and [804], where
the connection with nonsmooth analysis was pointed out, as well as some normal
compactness conditions. In [138] convex calculus is rather seen as an output of
nonsmooth analysis.

The qualification condition (b) of Lemma 3.82 bears some analogy with the
transversality condition of differential topology for differentiable manifolds, as
observed in [785]. Recent contributions have enlarged our views on qualification
conditions (see [150, 151, 180,563,564, 983] among others articles).

The study of marginal functions presented in the supplement to Sect.3.5 is
inspired by the study in Valadier’s thesis [945].

The section about differentiability of norms is just a short account in order to
prepare the introduction of special classes of Banach spaces. The Smulian test
could be deduced from differentiability results of (1/2)]|-||* and general duality
results between differentiability of a function and rotundity of its conjugate as in
[61,984].



Chapter 4
Elementary and Viscosity Subdifferentials

“Excellent!” I cried. “Elementary,” said he.

—Sir Arthur Conan Doyle, “The Crooked Man”

We devote the present chapter to some fundamental notions of nonsmooth analysis
upon which some other constructions can be built. Their main features are easy
consequences of the definitions. Normal cones have already been considered in
connection with optimality conditions. Here we present their links with subdif-
ferentials for nonconvex, nonsmooth functions. When possible, we mention the
corresponding notions of tangent cones and directional derivatives; then one gets
a full picture of four related objects that can be considered the four pillars of
nonsmooth analysis, or even the six pillars if one considers graphical derivatives
and coderivatives of multimaps. In the present framework, in contrast to the convex
objects defined in Chap.5, the passages from directional derivatives and tangent
cones to subdifferentials and normal cones respectively are one-way routes, because
the first notions are nonconvex, while a dual object exhibits convexity properties.
On the other hand, the passages from analytical notions to geometrical notions
and the reverse passages are multiple and useful. These connections are part of the
attractiveness of nonsmooth analysis.

We observe that the calculus rules that are available in such an elementary
framework are rather poor, although some of them (such as calculus rules for
suprema, infima, and value functions) go beyond the possibilities of ordinary
differential calculus. However, the most useful calculus rules such as sum rules
and composition rules exist under an approximate form in adapted spaces. This
crucial fact is an incentive to introduce limiting subdifferentials and normal cones
for which the preceding fuzzy rules will become exact rules, while the concepts will
turn out to be more robust, at the expense of a loss of precision. That will be done in
Chaps. 6 and 7. In the present chapter, most of our study is limited to the framework
of “smooth” Banach spaces, i.e., to Banach spaces in which smooth bump functions
exist. This is not the most general class of spaces on which fuzzy calculus can be

J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathematics 266, 263
DOI 10.1007/978-1-4614-4538-8_4, © Springer Science+Business Media New York 2013
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obtained. But on such spaces, smooth variational principles are available. In the case
of Fréchet subdifferentials, all the rules are valid in the class of Asplund spaces.
But to reach this conclusion, one has to use more sophisticated results such as
separable reduction. We present this passage in Sect. 4.6, but it can be skipped on a
first reading. We note that it is not known whether there are Asplund spaces that are
not Fréchet smooth.

Whereas the use of directional concepts is convenient (because one has notions
of directional derivative and tangent cone at one’s disposal), it cannot be as precise
and powerful as the use of firm (or Fréchet) notions. Thus, as in differential
calculus, directional notions can be considered first steps. However, even if calculus
with directional notions is poorer and not as precise as with firm notions, it
can be developed to a similar extent, provided one keeps track of minimization
properties or uses a variant of the directional subdifferential called the viscosity
directional subdifferential. We endeavor to present common properties of the two
subdifferentials we study in a unified manner. They can be embedded in a full family
using bornological subdifferentials. We point out this concept, but for the sake of
simplicity, we refrain from taking steps outside the two main concepts. Keeping
track of their analogies and differences is already a challenge for the reader.

When some continuity property (or “sleekness” or “regularity” property) is
available, one gets exact rules and strong properties that can be compared to what
occurs with mappings of class C' or of class D'. Throughout, X,Y are (possibly
infinite-dimensional) Banach spaces, but the concepts can be introduced for general
normed spaces.

4.1 Elementary Subderivatives and Subdifferentials

It is the purpose of this section to present some concepts of subdifferentials that
encompass both the notion of derivative and the notion of subdifferential in the
convex case. The main advantages of these concepts are their close relationships
with corresponding notions of derivatives and the fact that they provide rather
accurate approximations.

4.1.1 Definitions and Characterizations

The following definition introducing the Fréchet subdifferential is obtained as a
simple one-sided modification of the concept of Fréchet derivative.

Definition 4.1. Given a normed space X and a function f : X — R finite at ¥ € X,
the firm (or Fréchet) subdifferential of f at X is the set dr f(X) of ¥* € X* satisfying
the following property: for every € > 0 there exists some 6 > 0 such that
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VEBES), ) —f@)-EFx—0>—elx—F. @l

In other words, X* € dr f(X) if and only if

lim inf — [f(E+v) — fF) — 1)) > 0. @.2)

Iv][ =0 [[v]]

Setting for r € P := (0, +e0),

wp(r) := (1/r)sup{f(X) — f(X+v)+ (¥',v) : v € rBx},

we see that X* € dp f(X) if and only if i := iy is a modulus, i.e., a nondecreasing
function p : Ry — Ry such that 4(0) =0 and pu(z) — 0 as t — 0. Thus, ¥* €
dr f(x) if and only if there exists an element i of the set .# of moduli such that

weX, fE+V) = f@) = &) = —udD vl 4.3)

In fact, py defined as above is the smallest modulus u satisfying (4.3); it can be
called the modulus of firm subdifferentiability of f at X for X*.

Equivalently, ¥* € dr f(X) if and only if there exists a remainder r, i.e., a function
r:Ry — R, satisfying u(¢) :==¢"'r(t) = 0ast — 0, and

WweXx, fE+V) =) = &) = =r(vl)- (4.4)

This definition belongs to the realm of unilateral analysis (or one-sided analysis):
the equality, or double inequality, in the definition of the Fréchet derivative in terms
of limits has been replaced by a single inequality; moreover, in the formulation (4.2),
the limit is replaced with a limit inferior.

Example. The Moreau—Rockafellar subdifferential of f at X, i.e., the set dyr f(X)
of ¥* such that f(x) — f(x) — (x*,x —X) > 0 for every x € X, is obviously contained
in dp f(X). If f is convex, the two subdifferentials coincide (Exercise 1). Clearly, if
f is not convex, the Moreau—Rockafellar subdifferential is a very restrictive notion
that cannot be very useful, since it is global instead of local.

Example. Given a remainder 7, the w-proximal subdifferential of f at X is the set
drf(X) of X* € X* such that there exist ¢ > 0 and p > 0 for which

vx € B(x,p), f) =) = (&2 =%) > —en(|x—x]).

For 7(-) = (-)?, one denotes by dpf(X) the set df(X) and simply calls it the
proximal subdifferential. Clearly, this set is contained in drf(X). One of its
advantages is that it can be used without any knowledge of limits or limits inferior.
It is well suited for geometrical questions such as best approximations, at least in
Hilbert spaces. However, this subdifferential cannot be seen as a first-order notion,
as the following example shows.
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Example. Let f: R — R be given by f(x) = — |x|/?, ¥ = 0. Then f is of class C!
but dp f(X) is empty, as is easily seen.

Thus one may have f = g+ h with g of class C!, dph(X) # @, and dpf(X) = @.

O

Remark. Obviously, if f is Fréchet differentiable at X, then f'(X) € drf(X) and
/(@ e oFf (%) := —dr(—f)(X), the Fréchet superdifferential at X. Conversely, if
X' € dpf(X) and if X* € orf (X), then X* =X* and f is Fréchet differentiable at X,
with derivative this linear form. In fact, one can find remainders ., r— such that

WweX, &) +re(bvl) =2 fE+v) = f&) = & v) = r-(IvID;

hence by homogeneity,

.1

WeX, @) = vy = = lim — (re ([[ev]]) +r-([[ev]])) = 0,
t—04 1

and X* = x*. Then, using the remainder max(ry,r_), the assertion about the
differentiability of f is immediate.

Let us observe that it may happen that dr f () is reduced to a singleton although f
is not differentiable at X, as the following example shows.

Example. Let f: R — R be given by f(0) =0, f(x) = |x|sin*(1 /x) for x # 0. Then
dr f(0) = {0}, but f is not differentiable at 0.
A closely related notion is the notion of directional or contingent subdifferential.

Definition 4.2. The directional subdifferential (or Dini-Hadamard or Bouligand or
contingent subdifferential) of f: X — R atX € f~'(R) is the set dp f(¥) of X* € X*
satisfying the following property: for every u € X and € > 0 there exists some 6 > 0
such that

Y(t,v) € (0,6) x B(u,0), FE+1v)— f(x)— T, 1v) > —et. 4.5)
In other words, ¥* € dp f(X) iff forall u € X,
liminf l [f(x+1v)— f(X)— T, 1v)] >0, (4.6)
(t,v)—= (04 ,u) T

iff for all u € X, there exists a modulus ¢ such that
FE+ ) = f(R) = (%,1) > —ta(t + v — ul]). @)
Thus, one has

Irf(X) C dpf(X). (4.8)

Although the definition of the firm subdifferential is simpler than the definition
of the directional subdifferential, it is often easier to check whether a linear form
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belongs to the second set. The reason lies in the following connection with a
directional derivative, which yields a convenient characterization.

Proposition 4.3. A continuous linear form X* belongs to dp f(X) iff it is bounded
above by the lower directional (or contingent or Hadamard) (sub)derivate f(x,-)
defined by

P u) = limint (5 1) = £9).

Proof. This follows from (4.6), since lim, )0, .7 ' ((¥*,1v)) = (x*,u). 0

A necessary condition for directional subdifferentiability of f atX, i.e., nonemptiness
of dpf(X), is a one-sided Lipschitz-like property called calmness at X. A function f
on a normed space X is said to be calm at X if f(X) is finite and if there exist ¢ > 0,
p > Osuch that f(X+u) > f(X) — c|/u|| for all u in the ball pBx. Calmness is closely
related to properties of the lower directional derivate f2(%,-).

Proposition 4.4. For f : X — R finite at x € X, the following assertions are
equivalent and are satisfied when dp f (x) is nonempty:

(a) fiscalm atx;

(b) There exists some ¢ € R such that fP(x,u) > —c|u|| forall u € X;
(c) The function fP(x,-) is proper;

(d) fP(x,0)=0.

If in addition f is tangentially convex at x in the sense that fP(x,-) is sublinear,
these assertions are equivalent to the nonemptiness of dp f (x).

Proof. The implications (a)=-(b)=-(c)=-(d) are immediate, taking into account the
fact that either fP(x,0) = 0 or —oo. Let us prove that (d)=-(a). If (a) does not hold,
there exists a sequence (u,) — 0 such that f(x + uy,) — f(x) < —n?||u,||. Taking a
subsequence if necessary, we may suppose that (#,) := (n||u,||) — 0. Then

t;;1 (f(x—i—t,,(t,;lu,,)) —f(x)) <-n,

and since (¢, 'u,) — 0, passing to the liminf, we get f?(x,0) = —co.

When fP(x,-) is sublinear and (c) holds, a consequence of the Hahn—Banach
theorem asserts that £ (x,-) is the supremum of the family dp f(x) of its minorants;
thus this set is nonempty. On the other hand, if x* € dpf(x), then (b) holds with
c = ||x*. O

In the following corollary, f is said to be guiet at X if —f is calm at X, i.e., if there
exist some ¢,p > 0 such that f(x) — f(X) < c|x—%| for all x € B(X,r); then c is
called a rate of quietness at x. This is the case if f is Lipschitzian with rate ¢ around
X, or more generally, if f is stable, or Stepanovian, with rate c at X, i.e., if there exists
some p > 0 such that | f(x) — f(%)| < ¢|lx—x]| forall x € B(X, p).
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Corollary 4.5. The function f is Hadamard differentiable at X iff both dp f (X) and
dpf (%) :== —dp(—f)(X), the directional superdifferential of f at X, are nonempty.
Then dpf(X) Ndpf(x) = {f ()}

If f is quiet with rate c at X, then dp f(X) C cBx-.
Proof. IfX* € dpf(X) and X* € —dp(—f)(X), then for all u € X, one has

(%)< liminf %(f(ertv)—f()‘c))g lim sup %(f(ﬂtv)—f(x))gw,m,

(t,v) = (04 1) (t,v) (04 )

so that x* = X* and the differential quotient has a limit, i.e., f is Hadamard
differentiable at X. The converse is obvious.

When f is quiet with rate ¢ at X one has f2(%,-) < ¢||-||, so that ||x*|| < ¢ whenever
x* € X* is majorized by fP(%,-). O

The inclusion (4.8) may be strict, as the following example shows.

Example. Let f be a function that is Hadamard differentiable at some point X € X,
but not Fréchet differentiable. Then dp f(x) = {f'(X)}, dp(—f)(x) = {—f'(X)} but
dr f(x) or dr(—f)(X) is empty in view of the preceding remark. O

Proposition 4.6. If X is finite-dimensional, then dr f(X) = dp f(X).

Proof. Suppose, to the contrary, that there exists X* € dp f(X) \ dr f(X). By definition
of dr f (%), there exists € > 0 such that for all n € N\ {0} one can find x, € B(x,n" ')
satisfying

fOm) = f(X) = (%20 = %) < —¢llx, — X]].

Then 1, := ||x, —X|| > 0. Let u,, :=t, ' (x, —X). Since (uy,) is a sequence of the unit
sphere that is compact, taking a subsequence if necessary, one may assume that it
converges to some unit vector u. The preceding inequality yields

fP&,u) <liminf t  (fE+tau) — (X)) <lim (', un) — & = (¥, u) — £,

and we get a contradiction to the characterization of Proposition 4.3. a

The following characterizations may be useful. They build a bridge toward the
notion of viscosity subdifferential in which the test function ¢ is smooth throughout
the space (or in some neighborhood of the point). This last notion is widely used in
the theory of Hamilton—Jacobi equations. It will be considered later.

Proposition 4.7. For every normed space X and every function f finite at X, the firm
(resp. directional) subdifferential of f at X coincides with the set of derivatives at X
of functions @ that are Fréchet (resp. Hadamard) differentiable at X and such that
0 < f, (%) = f(x). Equivalently, dr f(X) (resp. dpf(X)) is the set of derivatives at
X of functions \ that are Fréchet (resp. Hadamard) differentiable at X and such that
f — v attains its minimum at X.
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Proof. Clearly, if ¢ is Fréchet (resp. Hadamard) differentiable and such that ¢ < f,
¢(X) = f(X), one has ¢’ (X) € dr f(X) (resp. ¢'(X) € dp f(X)). Conversely, given X* €
dr f(x) and a modulus u satisfying (4.3), setting

¢ (x) :=min(f(x),g(x)), with g(x) := f(¥) + (X',x = %),

one sees that ¢ < f, ¢(x) = f(x), and

02 ¢(x) = f(%) = x",x=%) = —p(flx =) [lx = =],

so that ¢ is Fréchet differentiable at X with derivative X*. The case of the Hadamard
subdifferential is similar, using (4.7) instead of (4.3).

The passage from the first characterization to the second one is obvious, taking
W = @. The reverse passage amounts to replacing w by ¢ := w— y(x) + f(x). O

We will see some calculus rules after pointing out simple properties and delineating
links with geometrical objects.

Exercises

1. (a) Prove that X* € Jr f(X) iff | lim H+ [f(x+Vv) — f(F) — *,v)]” =0, where

v[—0y IVl
the negative part of a real number r is denoted by r~ := max(—r,0).
(b) Prove a similar statement for dp f ().

2. For f: R —R finite at X, give a condition in order that dp f(X) be nonempty in
terms of the Dini lower derivatives df (%, 1) and df (%, —1).

3. Show that forx € £~ !(R) the set dr f(X) is convex, but not always weak* closed.

4. Given a subset E of a normed space X, let O = 1 — xg, where yg is the
characteristic function of E, i.e., O is given by Og(x) = 0 for x € E, Og(x) =1
for x € X \ E and let 1 be the indicator function of E given by 1z(x) =0 forx € E,
1£(x) = +oo for x € X \ E. Show that for all x € E one has 02(x,-) = 12(x,-) and
that dpOg (x) = N(E,x).

5 (Characterization of dpf(x) with the notion of sponge [930]). A subset S of a
normed space X is called a sponge if for all u € X \ {0} there exists § > 0 such that
the drop [0, 8]B(u, 6) is contained in S.

(a) Show that every neighborhood of 0 is a sponge, and that the converse holds if X
is finite-dimensional.

(b) Show that in an infinite-dimensional space there are sponges that are not
neighborhoods of 0.

(¢) Prove that X* € dp f (%) iff f is calm at X and for every € > 0 there exists a sponge
S such that

WrESHE  f(x)— f(®) - Fx—F) > —ex—3.
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6. Show that in every infinite-dimensional normed space X there exists a function
f:X — R finite at X = 0 such that f2(%,u) = 0 forall u € X \ {0} but Ip f(X) = 2.
Describe a sponge S such that f attains its minimum on S at 0. [Hint: Using the fact
that the unit sphere Sy is not precompact, take a sequence (e,) of Sx and & > 0 such
that He,, — epH > ¢ forall n # p and define f by f(x) = —2"" if x =4 "¢, for some
n €N, f(x) = 0 otherwise, and observe that f is not calm at 0.]

7. On the space X := C(T) of continuous functions on 7 := [0, 1], endowed with
the supremum norm, consider the function f : X — R given by f(x) = minx(T).

(a) Prove that the Fréchet subdifferential of f is empty at every point.
(b) Prove that dpf(x) is nonempty if and only if x attains its minimum on 7 at a
unique ¢, if and only if f is Hadamard differentiable at x.

4.1.2 Some Elementary Properties

We have seen some relationships with differentiability. Let us consider some other
elementary properties of the subdifferentials we introduced. The first one is obvious.

Proposition 4.8. The subdifferentials dr and dp are local in the sense that if f and
g coincide on some neighborhood of X, then dr f (X) = drpg(X) and dp f (X) = dpg(X).

Proposition 4.9. If f is convex, then dp f (%) and dp f (X) coincide with the Moreau—
Rockafellar subdifferential dyg f (X):
Ipf(X) = dpf(X) = ourf(X) :={X" € X" :vxe X, f(x)=>f(X)+ & x—X}

Proof. 1t is clear that dp f(X) and dp f(X) contain dyrf(X). Let f be convex and let
¥ € dpf(X). Then X* is bounded above by fP(%,-), hence belongs to dyrf(¥) by
Theorem 3.22. g

Proposition 4.10. For every function f finite at X, o f (X) (resp. dp f(X)) is a closed
(resp. weak* closed) convex subset of X*.

Proof. The weak™* closedness and convexity of dpf(X) stem from Proposition 4.3.
Let X¥* € X* be in the closure of dr f(X). For every € > 0 there exists x* € dr f(X)
such that ||¥* —x*|| < €/2; let 6 > 0 be such that for every x € B(x, ) one has

J&x) = f(®) = (" x =) = —(&/2)lx— x|
Then, for every x € B(X, 0), one has
fx) = f(x) — (x,x—x) > —¢|x—x.
Thus X* € dp f(X): this set is closed. The convexity of d f(X) is obvious. O

The sets dr f(X) and dp f(X) may be empty, even for a Lipschitzian function.
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Example. For X =R, f(x) :=— |x|,X:=0onehas dp f(X) = dpf(X)=@. O

Such a fact may appear to be a drawback. On the other hand, it makes the optimality
condition of the next theorem a nontrivial test.

In finite dimensions, Rademacher’s theorem ensures that the subdifferential
dr f(x) of a locally Lipschitzian function f is nonempty for x in the complement
of a set of null measure. An extension has been given to some infinite-dimensional
cases by D. Preiss. We will give a simpler density result later (Theorem 4.65).

The preceding subdifferentials fail to enjoy the most useful calculus rules.
In particular, the inclusion d(f + g)(X) C df(X) + dg(¥) is not valid in general,
as the following example shows.

Example. ForX =R, f(x):=—|x|,g=—f,Xx:=0onehas dr f(X) = dp f(X) =&
but 9 (f +¢)(0) = dp(f +¢)(0) = {0}. O
In the sequel we strive to get some form of this desirable inclusion. The
subdifferentials introduced in the next chapters will be more suitable for such an ob-
jective. However, they will lose the accuracy of the directional and firm

subdifferentials. Also, the following obvious, but precious, property will no longer
be valid.

Proposition 4.11. The firm and the directional subdifferentials are homotone in the
sense that for f > g with f(X) = g(%) finite one has

Jrg(X) C Irf(X), dpg(xX) C dpf(X).

An immediate but useful consequence is the following necessary condition.

Theorem 4.12. If f attains at X a local minimum, then one has 0 € dr f(X) and

0 € dpf(%).
Proof. Let g be the constant function with value f(¥). Then f > g with f (%) = g(%)
and the preceding proposition applies. O
Exercises

1. Prove Proposition 4.11 with the help of Proposition 4.7.

2. Show that the proximal subdifferential at 0 of f : R — R given by f(x) := |x| —

3/2

|x|”/< is the open interval (—1, 1), hence is not closed.

3. Givenasubset Sof X,x € Sand A € [0, 1], show that Adds(x) C dds(x) for d :=
dr and d = dp. [Hint: Use Proposition 4.11 or the fact that dy attains its infimum at
x and dds(x) is convex.]

4. Give a detailed justification of Proposition 4.8.
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5. Let X,Y be normed spaces and let f = hog, where h: Y — R is finite at j :=
g(x) and g : X — Y is a bijection that is Fréchet differentiable (resp. Hadamard
differentiable) at X whose inverse has the same property at y. Prove that dr f(X) =
& (X)T(rh(y)) := drh(y) o g' (%) (resp. dpf(X) = g (X)T(dph(y))). Give a localized
version of such a result, assuming that g is a bijection of a neighborhood U of X onto
aneighborhood V of g(x).

6. Let X be a finite-dimensional Euclidean space and let f : X — R be a lower
semicontinuous function. Show that the domain of dr f is dense in X. [Hint: Given
X € X and € > 0, show that for some p € (0,€) and some ¢ > 0 large enough the
function x — f(x) +|]x — || attains its infimum on B[X, p] at a point in B(%,p).]

7. Devise calculus rules for calm, tangentially convex functions. (See [853].)

4.1.3 Relationships with Geometrical Notions

Since the concepts of subdifferential introduced in the preceding subsections can be
used without any regularity condition on the function, we may apply them to the
case of an indicator function. Recall that the indicator function 1g of a subset E of X
is the function that takes the value 0 on E and the value 4+ on X \ E. Such a function
is useful in dealing with feasible sets in optimization. We have seen in Chap. 2 that
the notions of normal cone are also useful in formulating optimality conditions.
It is important and easy to relate these notions to the notions of subdifferential we
introduced.

Proposition 4.13. For every subset E of a normed space X and for every X € clE,
the firm normal cone and the directional normal cone to E at X coincide with the
corresponding subdifferentials of the indicator function of E: we have respectively

NF(E,X) = orig ()_C) and ND(E,X) = aDlE(f).
Moreover, one has

R dpdg(X) C Np(E.X), R dpdg(X) C Np(E,X). 4.9)

The first of the last inclusions is in fact an equality, as we show below.

Proof. The equalities stem from the definitions of the normal cones Ng(E,X) and
Np(E,x) adopted in Chap. 2. They can be made more explicit in the following way
(in the second equivalence, u is an arbitrary nonnull vector):

X €ENp(E,X) < 36(-):x€ ENB(X,6(e)) = (x",x—X) <elx—%,

¥ ENp(E,T) < 38(--) : 1 € (0,8(e,u)), v € ? NB(w,8(e,1)) = (F*,v) <&
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The inclusions are consequences of Proposition 4.11, taking f = 1z and g =
cdg for ¢ € Ry arbitrary. Since dg is Lipschitzian with rate 1, we get drpdg(X) C
Np(E,X) N Bx~ and a similar relation with the directional notions. O

Combined with the chain rules we will establish, the preceding characterizations
enable one to recover the calculus rules for normal cones. As an example, we
observe that when E := g~ !(C) with g Fréchet differentiable at X € E, using the
fact that 1 = 1¢ 0 g, one gets

Nr (E.X) = 9F (1c08) (%) D dric(g(x) 08 (x) = (¢'(x)) T (NF(C.8(x))) -

Although the characterization of the directional normal cone seems to be rather
involved, the directional normal cone deserves to be called, for short, the normal
cone in view of the fact that it is the polar cone to the tangent cone. For the firm
normal cone, an analogous relationship is seldom used, since it is more subtle
(Exercise 7).

In turn, the lower directional derivative f of a function f can be interpreted
geometrically in a simple way using the notion of tangent cone.

Proposition 4.14. The tangent cone at Xy := (X, f (X)) to the epigraph Ey of f is the
epigraph of the lower (or contingent) subderivate f° (%, -):

TP(Ep%p) = {(u,r) € X xR: r> fP(%u)},
2@ u) =min{r: (u,r) € T°(E;,Xs)} .

As usual, min means that if the infimum is finite, then it is attained.

Proof. We have (u,r) € TP(Ef,y) iff there exist sequences (t,) — 0., (un) — u,
(rn) — r such that (X, f(X)) + 1, (tn,rx) € Ey, or equivalently, f(X) +t,r, > f(X+
tauty) iff there exist sequences (t,) — O, (u,) — u such that r > liminf, 7, ' (f(¥ +
ttty) — f (X)) iff r > Timinf, ) 0, 2 ' (f(X+1v) = f(%)) := fP(x,u). The second
relation is a consequence of the fact that TP (E,Xy) is closed and stable under
addition of vectors of the form (0, p) with p € R, . O

Corollary 4.15. The directional subdifferential dpf(X) of f at X € domf and the
normal cone Np(Ey,Xy) to the epigraph Ey of f at Xy := (X, f(X)) are related by the
following equivalence:

f*Eal)f()_c)@()_C*,—l)END(Ef,)_Qf). (4.10)

Moreover, X* € dpf(X) whenever there exists ¢ > 0 such that (X*, —1) € cdpdg,(Xy).
If f is Lipschitzian around X with rate c and if X X R is endowed with the norm
given by ||(x,r)|| . := c||x|| + |r|, one has

X' e an()_C) & (f*, —1) € CaDdE/ ()_Cf)
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Proof. Relation (4.10) follows from the previous characterizations:

T copfE)eVueX, (&,u)<fPFEu)
e V(u,r) e TP(Ep,xp), (7 u) <r
& V(ur) € TP(Ep%p),  ((x*,—1),(u,r)) <0
& (X,—1) € Np(Ey,Xy).

The second assertion is a consequence of the relation cdpdg, (Xr) C Np(Ef,X¢).
A proof of the last equivalence is presented in the supplement on bornological
subdifferentials. O

A similar relationship holds for the Fréchet subdifferential.

Proposition 4.16. The Fréchet subdifferential dr f(X) of [ at X € domf and the
Fréchet normal cone Nr (Ey,Xy) to the epigraph Ey of f at Xy := (X, f(X)) are related
by the following equivalence:

X*Eapf()_c)@()_C*,—l)ENF(Ef,)_Qf). 4.11)

If f is Lipschitzian around X with rate ¢ and if X x R is endowed with the norm ||-
one has

X e apf()_c) =1 (f*,—l) € CaFdE/ ()_Cf)

Proof. IfX* € Jr f(X), then one has (X*, —1) € Np(Ef,Xy): given € > 0 one can find
0 > 0 such that for all (x,r) € B(Xy,6) NE one has

(=1, (=% r = f(%))) < &0 =% = f(x) + f(X)
<elx—x|| <ell(x,r) = xS@)I-

Now let (x*,—1) € Np(Ef,Xy). Let us first show that for ¢ > b := ||x*|| and some
p > 0 we have the calmness property

VreB(Xp), f(x)—f(®) > —c|x—3. “.12)

By definition of the Fréchet normal cone, given € € (0, 1) with € < ¢ —b we can find
1 > 0 such that for all (x,r) € EfNB(Xs,n) we have

(@, —1),(x—%,r— @) < elc+ D) max(|x =, [r— fE]).  (@.13)

Let us show that for p := n/(c+ 1) relation (4.12) is satisfied. If the opposite
inequality holds for some x € B(X,p), setting s := ||x —X|| > 0 and taking r :=
f(%) — cs in inequality (4.13), so that (x,r) € Ef N B(Xs,n), we get the following
contradictory inequalities:

gs < —bs+cs < (X x—X) —r+ f(X) <e(c+ 1) (s+cs).



4.1 Elementary Subderivatives and Subdifferentials 275

Now let us show that for all x € B(X,p) we have

) = f(3) = & ,x—%) —ellx—x]|.

Suppose, to the contrary, that for some x € B(X,p) the opposite inequality is
satisfied:

fO)—f®) < &,x—X) —elx—x]. (4.14)
Then f(x) — f(X) < ||x*||||x — X]||, and by (4.12), we get

[f() = FG)] < ellx—x|| < cp.

Thus we can take r = f(x) in inequality (4.13), and we obtain
Fx=3) = () +f(7) < ellx—x],

a contradiction to (4.14). The proof of the last assertion is left as an exercise; it can
be adapted from the exercise in the supplement on bornological subdifferentials.
O

Corollary 4.17. Let f be finite at X and let d (resp. N) stand either for dp or dr
(resp. Np or Np). If d f(X) is nonempty, then with the preceding notation,

N(Ef. %) = (B (Df(F) x {~1}).

Proof. Since N(Ey,Xr) is a closed convex cone, the inclusion cl(R; (df(X) x
{—=1})) C N(Ey,X) stems from the previous corollary and proposition. Let us prove
the reverse inclusion when one can pick some x* € d f(X). Let (x*,—r) € N(Ef,Xy);
since {0} x R C T(Ef,Xy), we have r € Ry. When r is positive, we have w* :=
r~1x* € df(X) by the last two statements and (x*, —r) = r(w*,—1). When r = 0,
setting x7 := X" 4+~ 1(1 —#)x*, we have (x*,0) = lim,_o, t(x],—1) € N(E;,X),
since (tx;,—t) = t(x*,—1) + (1 —1)(x*,0) € N(Ey,Xy) by convexity, and hence
xf € df(x). O

Proposition 4.18. Let N = Np (resp. N = Nr) and d = dp (resp. d = 0p). If f :
X — R is finite at X one has N(Ef,X¢) = Ry (df(%) x {—1}) U (9= f(%) x {0}),
where

I° (%) = {x" €X*: (x",0) € N(Es, %)}

The cone djy f(¥) (resp. di f(%)) is called the directional (resp. firm or Fréchet)
asymptotic subdifferential or singular subdifferential of f at X. This terminology is
justified when d f(X) is nonempty: for every x* € 9 f(X), X* € df(X), and every t >
0 one has (X*,—1) + (1x*,0) € N(Ey,X) since N(Ey,Xy) is a convex cone, whence
X' +1x* € df(X); conversely, if for a given X* € d f(%) this inclusion holds for every
t > 0, then one has (x*,0) = lim;_,.t ! (¥* +7x*,—1) € N(E,Xf), which is closed,
and hence x* € 9 f(X).
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Proof. Since ¥+ R (0,1) is contained in Ey, one has {0} x Ry C TP(Ef,%/),
hence Nr(Ef,Xf) C Np(Ef,Xy) C X* x R_. The result ensues: given (x*,—r) €
N(Ey,Xf), either r = 0 and x* € 9~ f(X) or r > 0 and (r~'x*,—1) € N(E;,Xy), so
that x* = r(r~'x*) € rd f(x). The opposite inclusion is obvious. O

Example. Let f: R — R be given by f(x) =xforx e R_, f(x) := /xforx € Ry.
Then 9 f(0) = [1,+e0), ™ f(0) =R for d = dp and JF.

Let us note some other facts concerning normal cones to epigraphs.

Lemma 4.19. Let f: X — R be finite at X, letXp == (%, (X)), w:= (X,7), z:= (X,5)
be in the epigraph Ey of f with r < s. Then for N = Np or N = Nr one has

N(Es,z) C N(Ep,w) C N(Ef,%f) CX*xR_,  N(Ef,z) CX*x {0}.

Proof. The first inclusion entails the second one. It follows from the relations
Ef+z—w C Ey and N(Ef+z—w,z) = N(Ey,w). Since Xy + R, (0,1) C Ey,
z+{0} x (r—s,s —r) C Ef, one has R, (0,1) C T(Es,Xs), {0} x R C T(Ef,2),
hence Np(E, %) C Np(Ef,Xr) CX*xR_,N(Ef,z) C X* x {0}. O

As above, we say that f is quier at X if —f is calm at X (hence f(X) € R).

Lemma 4.20. If f : X — R is quiet at X, then for every (x*,r*) € Np(Es,Xf) \
{(0,0)} one has r* <0 and (—r*)~'x* € dp f(X). If, moreover, (x*,r*) € Nr(Ef,X),
then one has (—r*)~'x* € I f(%).

Proof. If f is quiet at X with rate ¢ > 0 in the sense that f(x) — f(X) < c¢|jx — ]| for
all x near X, then for all u € X one has f(x,u) < c||ul|, whence for all (x*,r*) €
Np(Ef,X¢), (x*,u) +r*c|lul| <0. Thus ||x*|| < —r*c and r* < 0 when (x*,r") #
(0,0), since * = 0 would imply x* = 0. Then ((—r*)~!x*, 1) € Np(Ey,Xs), since
Np(Eg,%f) is a cone. Then Corollary 4.15 ensures that ¥* := (—r*)~x* € dp f(%).
Proposition 4.16 asserts that X* € dr f(X) when (x*,r*) € Np(Ef,X¢). O

The Fréchet subdifferential being closely related to the norm of the space, it enjoys
a pleasant property about distance functions.

Lemma 4.21. For a subset E of X, its distance function dg, and w € clE one has

drdp(w) = Np(E,w) N Bx~, (4.15)
NF(E,W) :R+8FdE(W). (416)

Proof. Since dg is Lipschitzian with rate 1, one has dpdg(w) C By+. Moreover, as
already observed in Proposition 4.13, one has drdg(w) C Np(E,w). Conversely,
given w* € Np(E,w) N Bx+ and € > 0, one can find 6 > 0 such that (w*,x —w) <
€|lx—w]|| for all x € EN B[w,d]. Then w is a minimizer on Eg := E N B[w, 6] of
the function f : x — g|lx —w|| — (w*,x), which is Lipschitzian with rate at most
1+ €. The penalization lemma (Lemma 1.121) ensures that w is a minimizer of the
function f + (1 +¢€)d(-,Es) on B[w, 6]. Since d(+,Es) coincides with d(-,E) := dg
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on B(w,8/2), as is easily checked, this implies that for all u € B(w,8/2)
dg(u) —dg(w) — (W u—w) > —edp(u) —€|lu—w|| > =2 jlu—w|.

Since € > 0 is arbitrary, one gets w* € drdp(w).
The second relation in the statement is an easy consequence of the first one. 0O

The case w € X \ E is not as simple; we consider it under additional assumptions.
Later on, we shall give an approximate version. Again, the result is specific to the
Fréchet subdifferential. Recall that the norm of X is said to have the Kadec—Klee
property if the topology induced on the unit sphere Sy of X coincides with the
topology induced by the norm. This property holds when X is a Hilbert space. Given
w e X, we set

S(w) = {w" e X*: (whw) = [Iwl], [[w*]| =1} = 2 ||-[| (w).

Proposition 4.22 (Borwein and Giles). Let E be a nonempty closed subset of a
normed space X and let w € X \ E. Then for all w* € dpdg(w) one has |w*|| = 1.
If x € E is such that ||x —w|| = dg(w), then w* € S(w—x) and w* € dpdg(x) C
Nr(E,x). If the norm of X is Hadamard (resp. Fréchet) differentiable at w — x, then
dg is Hadamard (resp. Fréchet) differentiable at w.

If X is reflexive, there exists some z € X such that w* € S(w—z) and |w—z| =
dg(w). If, moreover, the norm of X has the Kadec—Klee property, then 7 is a best
approximation of w in E, so that w* € drdg(z) NS(w —z).

Proof. Let w* € dpdg(w) and let € > 0 be given. For a given sequence (#,) — 05 in
(0,1), let x,, € E be such that ||x,, — w|| < dg(w)+12. Since {x, : n € N} is a bounded
set, one can find 0 € (0,&/2) such that when 7, < 0 one has

W x, —w) < t;l [de(w+1t,(x, —w)) —dp(w)] +€/2
<ty w1 = w) = x| = [lw — x| + 23] + /2

< —|lw—xu||+e.

Thus liminf, (w*,w —x,,) > lim,, ||w — x,|| = dg(w) and ||w*|| > 1, whence |w*|| = 1,
dg being Lipschitzian with rate 1. Moreover, since (W*,w —x,) < [[w*||. [|[w — x| <
dg(w) +12, one has ((W*,w —x,)), — de(w).

If w has a best approximation x in E, one can take x, := x in what precedes,
so that (w*,w —x) = |[w—x|| and w* € S(w— x). On the other hand, from the
obvious relations dg (x+v) > dg(w+v) — ||w—x|| = dg(w+v) —dg(w), de(x) =0,
we get dpdg(w) C dpdg(x). Suppose the norm of X is Hadamard (resp. Fréchet)
differentiable at w — x. Then for all u € X one has
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1
(W' u) < liminf = [dg(w+1v) —dg(w))
() =(04u)

1
< limsup —{[[lw v — x| = [lw —x[|] = (S(w —x),u),
(£,v)=(04 1)

hence w* = S(w —x) and (¢t~ (dg(w +tu) — dg(w))) — S(w—x)(u), so that d is
Hadamard differentiable at w. The proof of the Fréchet case is similar.

If X is reflexive, the sequence (x,) has a subsequence that weakly converges to
some z € w+ rBx, with r := dg(w). Then (w*,w —z) = lim,(W*,w —x,) = r, so
that ||w—z|| = r and w* € S(w — z). If, moreover, the norm of X has the Kadec—
Klee property, one gets (w —x,) — w —z in norm, so that z € E and z is a best
approximation of w in E. O

The rules we have seen for the calculus of normal cones entail some rules for
subdifferentials. A more systematic study will be undertaken in the next sections.

Exercises

1. Given a subset E of a normed space X and x € E, show that Nr(E,x) (resp.
Np(E,x)) is the set of derivatives f’(x) of functions f that are differentiable (resp.
directionally differentiable) at x and attain their maximum on E at x.

2. Let f be a Lipschitzian function on X with rate ¢ > 1 and let X x R be endowed
with the norm given by [|(x, )|, := c||x|| + |r|. Let Ef be the epigraph of f and let
X¢ = (%, f(%)). Show that one has

X' e apf(f) = (f*, —1) € aFdE/ ()_Cf)

[Hint: Given X* € dr f(X), one has (X*,—1) € Nr(Ef,X¢) N Bx+xr by Proposi-
tion 4.16 and the fact that f is Lipschitzian with rate ¢ > 1. Thus (¥*,—1) €
orde 7 ()‘q f). The reverse implication is immediate from Proposition 4.16.]

3. Let X be a normed space and let E be a closed subset of X. Let w € X \ E. Show
that in the relation dpdg (w) C Sx+ one cannot replace dr with dp. [Hint: Take in £,
the complement to the set {x = (x;,x2,...): —(1+(2/n)) <x, <1+ (1/n)} and
w=0.]

4. Let f be a lower semicontinuous function on X, let (x,r) € X x R, and let
(x*,r*) € dpdepif(x,7).

(a) Provethat7* <Oand r* =0if r > f(x).

(b) Show that r* may still be equal to zero even if r < f(x).

(¢) Assume that dpdepif(x,r) # @ for all r < f(x). Show that r* < 0 if r is
sufficiently close to f(x).
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5. Let S C X, x € S. Show that the cone generated by dpds(X) may be a proper
subset of Np(S,%). [Hint: Take in ¢, the set § = USy, where S| = {x = (x1,x2,...) :
x1 >0} and S = {x = (x1,x,...): x; > —(1/k), xx > 1/k*} and take X = 0.]

6. LetS C X beaconvex set and letx € S. Using the distance function ds, prove that
Nr(S,X) =Np(8,x) ={x": X", u—x) <0,VueS}

[Hint: X* belongs to the normal cone to S at X in the sense of convex analysis if and
only if either ¥* = 0 or ||x*|| ~!X* € dds(X) (in the sense of convex analysis).]

7. Show that the Fréchet normal cone Nr(E,X) to a subset E of X at X € cl(E) is
the polar cone (in the duality between X* and X** := (X*)*) of the weak™ tangent
cone

1
T**(E,x):=w"" —limsupE; for E, := —(E —X)
t—04 t
when E; is considered as a subset of X**. Here w*™* —limsup,_,, E; denotes the set
of weak™ cluster points of bounded nets (v;);~¢ (or sequences (v;,) with (z,,) — 0)
with v, € E; for all 1 > 0. In particular, when X is reflexive, Np (E,X) is w*-closed.

4.1.4 Coderivatives

The notions of tangent cone and normal cone enable one to introduce concepts of
generalized derivatives for multimaps. We first define a primal notion and then a dual
one. Again, we identify a multimap with its graph, using the transpose HT : Y* = X*
of a positively homogeneous multimap H : X =2 Y between two normed spaces
defined by

HT(y*"):={x" € X*:V(x,y) €H, (x*,x)—{",y)<0}.
Definition 4.23. The directional or contingent derivative at z := (x,y) of a mul-

timap F : X =2 Y between two normed spaces is the multimap DF (x,y) : X = Y
whose graph is the tangent cone T'(F,z) := T?(F,z) to the graph of F at z:

DF (x,y)(u) :== DpF (x,y)(u) :={veY: (u,v) €T(F,2)}.

Definition 4.24. The directional (or contingent) coderivative of F : X =3 Y atz:=
(x,y) is the multimap D*F (x,y) := DpF(x,y) : Y* = X* that is the transpose of
DF (x,y):

D*F(x,y)")={x" e X" : (x",u) — (y*,v) <O0VueX, Ve DF(z)(u)}
={x"eX": (x",—y") € Np(F,2)}.
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The firm (or Fréchet) coderivative of F at (x,y) is the multimap D F (x,y) : Y* = X*
given by

DpF(x,y)(y") :={x" € X" : (x*,—y") € Np(F,2)}.

Since Nr (F,z) C Np(F,z), one has D F (x,y)(y*) C D*F (x,y)(y*) forall y* € Y*.
When F(x) is a singleton {y}, one writes DF (x) instead of DF (x,y) and D*F (x)
(resp. D}.F (x)) instead of D*F (x,y) (resp. Dy F (x,y)). When F is a mapping that is
Hadamard differentiable at x, one has DF (x) = F'(x) and D*F (x,y) = F'(x)T, the
transpose of the derivative F’(x) of F at x, as is easily checked. Similarly, when F
is Fréchet differentiable at x, one has D F(x) = F'(x)T. When Y =R and F(-) :=
[f(),4oo) for some function f : X — R, one has

dpf(x) =D F(x,f(x))(1)

in view of Proposition 4.15, which asserts that x* € dp f(x) if and only if (x*,—1) €
Np(epif,xs) = Np(F,xs) for x; := (x, f(x)); similarly, dr f(x) = DpF (x)(1).

The calculus rules we have given for normal cones entail calculus rules for
coderivatives. We also have the following scalarization result. Here we say that a
map g : X — Y between two normed spaces is tangentially compact at x € X if for
every u € X\ {0}, (un) — u, (t,) — 0 the sequence (¢, ' (g(X+tyu,) — g(%))) has a
convergent subsequence. This condition is satisfied if g is directionally differentiable
atx or if Y is finite-dimensional and if g is directionally stable at X in the sense that
forevery u € X \ {0} there exist € > 0 and ¢ € R such that ||g(x+1v) — g(X)|| < ct
for all r € (0,€), v € B(u,e). The latter condition is satisfied when g is stable
(or Stepanovian) at X in the sense that there exist » > 0 and k € R, such that
llg(x) —g(X)|| < k|lx—x]| for all x € B(X,r); for Y = R this definition coincides
with the one given above for functions.

Proposition 4.25 (Scalarization). For every map g: X — Y between two normed
spaces and for every X € X, y* € Y* one has the following inclusions. The first one
is an equality if g is tangentially compact at X; the second one is an equality if g is
stable at x:

dp(y*og)(X) CD*g(x)(y*),  Ir(y'og)(x) C Drg(x)(y").
Proof. Let h:=y*og, let x* € dph(X), and let G be the graph of g. Then for every

(u,v) € TP (G, (x,y)), where y := g (%), we can find sequences (t,) — 0, (u,) — u,
(vn) = v such that y+1,v,, = g(X + t,u,) for all n, hence

%) = (3" lim - e+ ) (7))

—lim (3 5 ) — 07, 8()] 2 1 () > (3",
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so that x* € D*g(X)(y*). If x* € dph(X), then for every € > 0 we can find some
6 > 0 such that for all x € B(%, 8) (hence for all x such that (x,g(x)) € B((,¥),9)),
we have

(%, =), (x,8(x)) = (X,7)) = (", x = %) — (h(x) = h(x)) < € lx—X]|.

Since [[x — %] < [|(x— %, g(x) = )|, we get (+*, —y*) € N (G, (£,3)): ¥* € Djg()v*)-

Let g be tangentially compact at X and let x* € D*g(x)(y*). Then for every u €
X and every sequence ((un,t,)) — (u,0) such that (¢, ' (h(X + tyu,) — h(T))) —
hP(%,u) we can find v € Y that is a cluster point of the sequence (t, ' (g(% + tyutn) —
¢())). Then (u,v) € T2(G, (5,5)), K (%,u) = (v*,v) and (x*,—y*) € Np(G, (%,5)),
whence

<X*,I/l> _hD(xvu) = <X*,M> - <y*,v> <0,
so that x* € dph(X).

Finally, suppose g is stable at ¥ and x* € Dy g(X)(y*). Let c € Ry, p > 0 be such
that ||g(x) — g(X)|| < c|lx —X|| for all x € B(X,p). Since (x*,—y*) € Nr(G, (,)),
given € > 0 we can find 6 € (0, p) such that for all (x,y) € GNB((%,¥),0) one has

(& x=3) = "y =) <ele+ 1) (e + y =)
Since y—y = g(x) — g(x) and ||g(x) — g(X)|| < c¢||x —X||, this relation can be written
(@ x—%) < (y",8(x)) — ", 8(%)) + & [lx =Xl
so that x* € dp(y* 0 g)(X). O
The following example shows that one cannot drop the stability assumption.

Example. Let g: R — R? be given by g(x) = (x,/]x|). Then N(G, (0,0,0)) = R x
R x R_, so that for y* := (1,0) one has D*g(0)(y*) =R but d(y* 0 g)(0) = {1}.

The following result shows how a classical property of differential calculus can be
extended to multimaps using coderivatives. A converse in adapted spaces will be
established later.

Proposition 4.26. Let V.W be open subsets of normed spaces Y and Z respectively
and let M : Y = Z be a multimap that is pseudo-Lipschitzian on V x W with rate ¢
in the sense that

YV eV, wewWnM®y), dwM(O))<cd,V). (4.17)

Then for all (v,w) €V xW, z* € Z*, y* € DEM(v,w)(z*) one has ||y*|| < c||z*].

Defining the norm of a process, i.e., a positively homogeneous multimap H :
Z*=Y* by

[H | == sup{[ly*[| : y* € H(2"), 2" € Sz},

the conclusion can be written ||D.M(v,w)|| < ¢ forall (v,w) €V x W.
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Proof. Let (v,w) € VxW, z" € Z*, y* € D;M(v,w)(z") and let r be a remainder
such that

32) €M —(vw) = (v, y) +(=2",2) < r([lyll + lzl)-

Given ¢’ > c, relation (4.17) ensures that for all y € ¥ small enough (so that V' :=
v+y € V) one can find z € ¢ [|y|| Bz such that w+z € M(v+y). Then we get

0% 3) < (252 eIyl + Il < Ayl + (< + 1) Iyl

so that ||y*|| < c||z*|. Since ¢’ is arbitrarily close to ¢, we get ||y*|| < ¢||z*]|. O

Calculus rules for coderivatives will be given later. Here we just point out how
they can be derived from calculus rules for functions. Let us consider the case of
the composition H := Go F of two multimaps F : X =Y, G:Y == Z. We have
x* € D*H(X,z)(z*) if and only if (x*, —z*) € digphn (X,Z) and

lgth(f,Z) = inf{lgphp (f,y) + lgth(y,Z) 1y e Y}. (4.18)

Thus, sums and performance functions are involved. A geometric approach can
also be taken considering the graph of H, that is the projection on X x Z of the
intersection (gphF x Z) N (X x gphG).

4.1.5 Supplement: Incident and Proximal Notions

The preceding relationships between analytical and geometrical notions incite us to
present variants of the directional derivative and directional subdifferential. They are
not as important as the notions expounded above, but they have some interest as the
exercises below show. They arise from a variant of the contingent cone introduced
in Definition 2.153 we recall here.

Definition 4.27. Given a subset S of a normed space X and x € S, a vector v € X is
said to be an incident vector to S at x if for every sequence (,) — 04 there exists
a sequence (v,) — v such that x +t,v, € S for all n € N. Thus, the set T/(S,x) of
incident vectors to S at x, called the incident cone (or inner tangent cone) to S at x, is

1
T!(S,x) := liminf - (§ — x).

t—0y 1
When T (S,x) coincides with the contingent cone 72 (S, x) = limsup, S0, % S—x),
one says that S is derivable at x; then the tangent cone to § at x is lim;_q, %(S —X).

We define the incident normal cone to S at x as the polar cone N;(S,x) :=
(T'(S,x))° of the incident cone to S at x.



4.1 Elementary Subderivatives and Subdifferentials 283

Exercise. Show that if S is convex, or if S is a differentiable submanifold of X, then
S is derivable at each of its points.

Exercise. Show that the set S := {0} U{27": n € N} is not derivable at 0.

Exercise. Show that the set 7/(S,x) of incident vectors to S at x is also the set of
velocities of curves in S issued from x: v € T(S, x) iff there exists ¢ : [0, 1] — S such
that ¢(0) = x, ¢/(0) :=lim;_,o, (1/¢)(c() — x) exists and is equal to v.

Exercise. Show that if A (resp. B) is a subset of a normed space X (resp. Y), then
T'(A,x) x T'(B,y) = T'(A X B, (x,)),
T'(A,x) x TP (B,y) C TP(A x B, (x,y)) C T"(A,x) x T"(B,y).

Deduce from these relations that A x B is derivable at (x,y) iff A and B are derivable
at x and y respectively.

Exercise. Show that if A (resp. B) is a subset of a normed space X (resp. Y), then

Np(A x B, (x,y))
Ni(A x B, (x,y))
Np(A X B, (x,y))

Np(A,x) x Np(B,y),
N](A,X) X NI(va)v
Ni(A,x) x Ne (B, ).

By analogy with the contingent (or lower directional) derivate of a function f at
x, we define the incident derivate (or inner derivate) of f at x by

fl(x,u) =inf{reR: (u,r) € TI(Ef,xf)},

where E is the epigraph of f and x := (x, f(x)).
Similarly, we define the incident subdifferential of f at x as

If(x) = {x" e X" () < f1(x,))
Exercise. With the preceding notation and E := epif, x; := (x, f(x)), show that
x'e 81f(x) — (x*, —1) S N[(Ef,)gf).

Exercise. Show that f is epi-differentiable at x in the sense that f/(x,-) = fP(x,)
if and only if the epigraph E¢ of f is derivable at xy. Show that this occurs when f
has a directional derivative at x.

For questions connected with distance functions, the notion of proximal normal is
an appropriate tool, at least in Hilbert spaces.

Definition 4.28. Given a subset S of a normed space X and x € S, a vector v € X
is said to be a primal proximal normal to S at x € S, and one writes v € N (S, x), if
there exists some r > 0 such that ds(x+ rv) = r||v]|.
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This relation can be translated geometrically as B(x+ rv,r||v|]|) NS = &, since
the latter equality means that ds(x+ rv) = r||v||. Since for ¢ € [0,r] one has B(x +
tv,t||[v|]) C B(x+ rv,r||v||) by the triangle inequality, one also has

vENP(S,x) = TIr>0:Vre0,r], Blx+tnt|v|)NS=a
< Ir>0:Veel0,r], ds(x+1v)=t|v|.
The set of proximal normals to S at x is Np(S,x) := Jx (N (S,x)), where Jy is the
duality multimap of X given by Jx (v) := {v* € X* : (v*,v) = |[v||* = |v*||*}. When
X is a Hilbert space, Jy is the Riesz isometry, which allows one to identify X* with

X and Jx with Ix, the identity map. Then the following geometric characterization
may be useful:

VENP(S,x) < Ir>0:Vre€0,r], (x+tv+t|v||Bx)NS={x}

In fact, if v satisfies this last condition, for ¢ € [0, ] one has B(x+1tv,t||v])NS = &,
hence v € Np(S,x). Conversely, suppose ds(x + rv) = r|v|| for some r > 0, i.e.,
|x+rv—s|*> > r2|v||* for all s € S, or equivalently, after expanding ||x + v —s||*,

|x—s]*>2r(v|s—x) VseS.
Then for all z € [0,7), s € S\ {x}, taking into account the sign of (v | s —x), one has
o= s]I* > 2t(v | s =),

hence ||x + v —s||* > 2||v||*. Thus (x+v+1]|v||Bx) NS = {x}.
Proposition 4.29. For every closed subset of a Hilbert space X and every x € S, the

set Np(S,x) of proximal normals to S at x is convex.

Proof. Let vy,v; € Np(S,x). The preceding remark shows that for all » > 0 small
enough, x is the projection of x+ rv; (i = 0, 1) in S, or equivalently,

x—s|* > 2r(vi| s—x) VseS.

Givenr € [0,1], for v := (1 —1)vp + vy, we see that the preceding inequality holds
with v instead of v;. Thus x is the projection of x4 rv on S and v € Np(S, x). O

Proposition 4.30. For every closed subset S of a Hilbert space X and every x € S,
one has Np(S,x) C Nr(S,x) C Np(S,x).

Proof. Letv € Np(S,x), so that for some r > 0, one has [x—s||* > 2r(v | s —x) for
all s € S. Then, given € > 0, taking 6 € (0,2r¢), for all s € SN B(x,5) we have
(v]s—x)<(8/2r)||x—s| < ellx—s|. Thus v € Np(S,x). O

Exercise. Relate the proximal subdifferential dpf(¥) at ¥ € domf of a function
f:X — R to Np(epif, (%, f(x))). Consider the case of the indicator function of
some closed subset S of a Hilbert space.
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4.1.6 Supplement: Bornological Subdifferentials

The firm subdifferential and the directional subdifferential are two special cases of
a general process we briefly describe now. Given a point X of a normed space X,

—X . = .
to every convergence Y on the set R* of functions from X to R we can associate

a notion of derivative for f € R finite at ¥ by taking as derivative of f at X the
limit, if it exists, of the functions f; : u + t =1 (f(X +tu) — f(%)) as t — 0, ¢t # 0.
Assuming that the limit is linear and continuous, the Fréchet derivative corresponds
to the topology of uniform convergence on bounded subsets, while the directional
derivative corresponds to continuous convergence (or uniform convergence on
compact subsets if one considers continuous functions). Subdifferentials can be
obtained in a similar way using a one-sided convergence: for every convergence

Y on R" one can define ¥ to be in the subdifferential of f at X associated with
yif (x* —f;)T — 0 as t — 0, where r* = max(r,0) is the positive part of the
real number r.

A general means for obtaining a convergence on R" consists in selecting a family
A of subsets of X and in requiring uniform convergence on the members of A. It is
usual to require that Z be a bornology, i.e., that 2 be a covering of X by bounded
subsets and that % be hereditary (i.e., that B € % whenever B C B for some B’ € %).

Let us rephrase the definition of the subdifferential associated with the conver-
gence defined by # when 4 is a bornology on X (or just a covering of X): if f
is a function on X finite at X, then the subdifferential associated with % is the set
dz f(X) of ¥* € X* such that for all B € Z one has

liminfinf - (fx+1v)— f(X) — (x",1v)) >0,

t—04 veB T

or more explicitly, for every B € 4,
Ve>0,30>0:Vr€[0,0], WweB, f(x+1v)—f(x)— &, 1v)>—et.

When 4 is the canonical bornology, i.e., the family of all bounded subsets of X, one
gets the Fréchet subdifferential, as is easily seen. But other choices are of interest,
for instance the family of finite subsets of X and the family of compact or weakly
compact subsets of X. When Z is the family of sets contained in some compact
subset, one can show that d» f(X) = dp f(X) (Exercise 1).

In the sequel we suppose that the bornology % is such that B x T € Py« for all
B € %Bx and all compact intervals T of R; this natural condition is satisfied in the
last two examples and in the case of the canonical bornology.

The following observation is a simple consequence of the definitions.

Lemma 4.31. For every function f finite at X, the set dgf(X) is closed in the
topology of uniform convergence on the members of 2.

A characterization of dgf when f is Lipschitzian can be given. It uses the
following lemma, which is of independent interest.
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Lemma 4.32. Suppose f is Lipschitzian with rate ¢ around some X € X and X x R is
endowed with the norm given by ||(x,r)|| = c||x|| + |r|. Then for (u,r) near (%, f()),
the distance of (u,r) to the epigraph E of f satisfies

dg(u,r) = (f(u) — r)Jr :=max(f(u) —r,0).

Proof. Since (u, f(u)) € E, the inequality dg(u,r) < (f(u) —r)" holds for every
function f. When f is Lipschitzian with rate ¢ on a ball B(x,p) and ¢ € (0,p/3),
this inequality cannot be strict when (u,r) € B(X,0) X B(f(X),co): otherwise, for
some (v,s) € E, we would have

cllu=vil+lr—s| < flu) —r<clu=3+|f(%) —r| < 2c0,
hence ||u—v|| <20, |[v—=X|| < ||v—u||+|ju —X|| <30 < p, so that we would get

cllu=vi+lr=sl < flu) =r < flu) = fv) +s=r <[f(u) = fW)[+]r—s],

a contradiction to the Lipschitz assumption. a

Proposition 4.33. If 0 is the subdifferential d associated with a bornology %,
then for every function f on X finite at X, the implications (a)=>(b)<(c)=(d) hold
among the following assertions, in which E denotes the epigraph of f and X7 :=
(x, f(X)). If f is Lipschitzian with rate ¢ around X, and if X X R is endowed with the
norm given by ||(x,r)|| := c||x|| + ||, then all these assertions are equivalent:

(a) (x*,—1)€ R+adE()_Cf),‘

(b) (x*,—1) € di(Xy), where g is the indicator function of E;

(c) X € If(X);

(d) X* € des(Xy), where ey is defined by e¢(x,r) := max(f(x) —r,0).

Note that dz1£ (X¢) can be considered the Z-normal cone to E at Xy.

Proof. (a)=(b) follows from the fact that for all A € R, one has Adg < 1g,
Adg(Xf) = te(Xy).

(b)=-(c) Let us prove that if x* ¢ d f(X), then (X*, —1) ¢ d1g(Xf). By assumption,
there exist o € (0, 1], B € %, sequences (v,) in B, and (¢,) — 0. such that

ty L (F(E +tavn) — f(F) — (¥, tavn)) < —a. (4.19)

Letc:= || sup,cp |[V]|+ 1, let r =1, L (f(R+tav) — f(X)), s0 that 1, < (X, v,,) —
o < c—aforall n. Let r, := max(r,,—c). Then (v, r},) € B':= B x [—c,c| € Bxxr
and (X+ t,vp, f (%) +1,7},) € E for all n. If n is such that r, = r,, we deduce from
relation (4.19) that

ty ' [te (F+tvn, f(X) + 1)) — 16 (%, (X)) + a7, — (¥, tava) | < —01,

and the same inequality holds when ), = —c, since —c — (x*,v,) < —1 < —o. Thus
we cannot have (X*,—1) € dig(Xy).
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(c)=(b) Let X* € df(x). In order to prove that (x*,—1) € dig(Xs), let us show
that given B € %, ¢ > 0, € > 0 we can find 0 > 0 such that for all r € (0,6), (v,r) €
B X [—c,c] with (X+1v, f(X) +tr) € E we have

(x*,=1),x+tv—%f(%)+tr— f(x))) <te.

This relation amounts to tr > (X*,tv) —te. Since tr > f(X+1v) — f(X), this inequality
is satisfied whenever v € B, t € (0,0), where & > 0 is chosen in such a way that

Vi€(0,0), WweB, f(x+1v)—f(X) > (X", 1v) —et,

in accordance with the definition of d f(X).

(c)=(d) Since ey = max(hy,0), where hy(x,r) := f(x) —r, we easily see that for
every X' € d f(X) we have (x*, —1) € dhs(Xy) C des(Xy).

(d)=-(a) (when f is Lipschitzian) is a consequence of the preceding lemma. O

Exercises

1. Show that when f is continuous and when & is the family of sets contained in a
compact subset, one has dg f(X) = dp f(%).

2. Given € > 0 let dE f(X) be the set of X* € X* such that

L. 1 _ _ -
ﬁggmmvﬁ+ﬂ—ﬂ@—@nNZ—&

Give elementary calculus rules for these approximate subdifferentials.

3. Given € > 0 and a subset E of X whose closure contains X, let N&(E,X) be the
set of X* € X* such that

1
limsup —— (x*,x — %) < €.
X—EX ||x_'x||

(a) Show that Nf (E,X) = df1e(X).

(b) Let Ef be the epigraph of f and let X7 := (X, f(X)). Show that for every X* €
O¢ 1) one has (¥, —1) € NE (E7.%,).

(c) Conversely, given (x*,—1) € Nf(Ef,Xy), find o := o/(€) such that X* € 9 f(%).
(See [525].)

4. Using the concepts of Sect. 4.3, show that the following assertion implies those
of Proposition 4.33: X* belongs to the viscosity subdifferential associated with 2 in
the sense that there exists a function ¢ on some open neighborhood U of X that is
such that (x) = f(x), @ < f on U, ¢ is B-differentiable on U, with ¢’(¥) =X* and
such that for every B € % and x € U the function u — sup{|[{¢’(u) — ¢'(x),v)| : v €
B} is continuous at x.
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Prove that when X has a Z-smooth bump function, this assertion is equivalent to
the other ones in Proposition 4.33.

5. Show that if f: X — Y is a Lipschitzian map with rate ¢ between two metric
spaces, and if X x Y is endowed with the metric given by d((u,v),(x,y)) :=
cd(u,x) +d(v,y), then the distance to the graph G of f satisfies d((x,y),G) =
d(f(x),y). [Hint: Mimic the proof of Lemma 4.32.]

4.2 Elementary Calculus Rules

In this section we present some calculus rules that are direct consequences of the
definitions. Their interest for optimization problems is limited, since usually one
needs inclusions in the reverse direction of that obtained from these rules. However,
combined with continuity properties or with other approaches presented in the
next chapters, these rules make it possible to get equalities under some regularity
conditions. Thus the reader should be aware of them and see them as natural
counterparts to the more important fuzzy rules presented in the sequel.

4.2.1 Elementary Sum Rules

The inclusion of the next statement is a direct application of the definitions: the
sum of two remainders is a remainder, and a similar stability property holds for
multiplication by a nonnegative real number.

In the following results, d stands either for dp or for dr.

Proposition 4.34. [f g and h are finite at X, and if r,s € Ry, then one has
rdg(x) + sdh(x) C d(rg+ sh)(x). (4.20)

Although this inclusion is not as useful as the reverse inclusion, it implies a kind
of invariance by addition property and a necessary optimality condition for problems
with constraints and differentiable objective functions.

Corollary 4.35. Ifhis Fréchet, respectively Hadamard, differentiable at X € domg,
then we have respectively

Ip(g+h)(X) = drg(X)+ (%), dp(g+h)(X) = dpg(x)+1'(X).

Another case in which equality occurs in relation (4.20) is the separable case.

Proposition 4.36. Suppose X =Y x Z, g(x) = g1(y), h(x) = ha(z) for x := (,2)
and some functions g1 : Y = R, hy : Z — R. Then for d = dp and d = dr one has
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(g +h)(F) = dg(X) + Ih(T). 421

Proof. LetX:= (y,Z) € Y x Z. For f := g+ h the inequality g?(¥,u) +h2(z,v) <
fP(x, (u,v)) forall (u,v) € Y x Z entails the inclusion dpg; (') x dphy(Z) C an(x)
Conversely, for all (%,7%) € 8Df(_), one has (y*,u) < fP(x,(u,0)) < g?(,u),
hence 7* € dpgi (7). Similarly 7¥ € dhy(Z). The case of df is left as an exercise. O

The special rule of Corollary 4.35 can be applied jointly with the optimality
criterion of Theorem 4.12. Thus, we recover Fermat’s rule of Chap. 2 and we get an
assertion that will be used repeatedly in the sequel.

Proposition 4.37. If f + g attains a local minimum at X and if f is F-differentiable
(resp. H-differentiable) at X, then — f'(X) € dpg(X) (resp. —f'(X) € dpg(x)).

Corollary 4.38 (Fermat’s rule). If f attains on a subset F of X a local minimum
atX € F and if f is F-differentiable, respectively H-differentiable, at X then we have
respectively

—f'(x) € Np(F,X), —f(X) € Np(F,X).

Proof. Setting fr := f + 1, where 1F is the indicator function of F, applying the
preceding two propositions and the definitions of normal cones, we get the result.
O

Exercise. Let g € F(Y),he€ F(Z), f € F(Y x Z) be given by f(y,2) :=g(y) +
h(z), x:= (3,2), u:= (v,w) € Y x Z. Give an example showing that one may have
fPx u) > g”F,v) + hP(zZw). [Hint: Take ¥ = Z = R, X = (0,0), ,, := 27472,
g(y) ==y for [y| € (t,/2,21,), g(y) = 0 otherwise, h(z) = g(2z).]

4.2.2 Elementary Composition Rules

Now let us turn to chain rules. Again, in the general case, the inclusion available is
not the most useful one.

Proposition 4.39. Suppose f = hog, where g: X — R and h : R — Ris a
nondecreasing function. If g(x) and h(g (X)) are finite, then

dph(g(x))dpg(X) C dpf(X), Irh(g(X))drg(X) C Irf(X).

If g is continuous at X, if the restriction of h to some open interval T containing v :=
g(%) is (strictly) increasing, and if (h | T)~" is differentiable at h(F), then equality
holds in the preceding inclusions.

Proof. Let7* € dph(7), y* € dpg(X). There exist maps ¢ : X — R, v : R — R such
that o < g, @ (%) = g(X), ¥ < h, y(X) = h(x), which are Hadamard differentiable at
X and 7 := g(X) respectively with ¢’(x) =x*, y/(¥) = F*. Since h is nondecreasing,
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we have f =hog>ho@ > wo@ and f(X) = y(¢(X)). Now wo ¢ is Hadamard
differentiable at ¥ and 75" = (yo @) (X) € dpf(%). A similar proof is valid for JF.
The last assertion is obtained by noting that g coincides with (h |r)~! o f near X.

O

Similar inclusions can be obtained when g is vector-valued and differentiable.

Proposition 4.40. Let X.Y be normed spaces, and let f =hog, where g: X —Y
is Hadamard, respectively Fréchet, differentiable at X and h : Y — R is finite at
y := g(X). Then we have respectively

¢ (®)T(dph(y)) := dph(y) 0 &' (X) C dp(hog)(%), (4.22)
g (®)T(Irh(y)) := oph(y) o g'(X) C I (hog)(%). (4.23)

Proof. Let us first consider the Fréchet case. Given ¥* € drh(y), there exists some
function y : ¥ — R that is Fréchet differentiable at y and such that y < h, (%) =
h(x), ¥/'(x) =y*. Then f > yog, (yog)(x) = h(y) = f(X), and since Yo g is
Fréchet differentiable at X, we get y* o g'(X) € d f(X).

The proof for dp is similar. One may also observe that for ¥* € dph(y), u €
X\ {0}, one has wy, := L (g(x+1v) — g(x)) = w:=g'(¥)(u) as (t,v) — (0;,u) and

5,¢ (®u) < liminf

1
—(hF+w) = h(y
(1) =(04 ) 1 (h+1w') = h(3))

< liminf l(}z(wtwt,v)—h(i)):f'()‘f,u),

(t,v)—=(04,u) T

since h(y+1tw;,) = h(g(x+1v)). Thus y* o ¢'(X) € dpf(X). O
An extension to multimaps can be devised using coderivatives.

Corollary 4.41. Let F := Ho G where G : X =Y and H := {h} is the multimap
associated with a single-valued map h : Y — Z that is Hadamard differentiable at
¥ € G(X), respectively Fréchet differentiable at y, and let 7 := h(3). Then we have
respectively

Dp(H 0 G)(%,7) C DpG(x,y) o (W' ())T, (4.24)
Dy (HoG)(x,Z) C DyG(x,5)o (W (7). (4.25)
Proof. We note that F = {(x,h(y)) : y € G(x)} = (Ix x h)(G). Using Proposi-
tion 2.108, we see that for all (x*, —z*) € Np(F, (X,Z)) we have (x*, — (W' (3))" (z*)) €

Np(G,(%,y)). Writing this relation in terms of coderivatives, we get (4.24). The
Fréchet case is similar. O

Conditions ensuring equalities in inclusions (4.22), (4.23) can be given.
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Proposition 4.42. Let X,Y be Banach spaces and let f = ho g be as in the preced-
ing proposition, with g'(x)(X) =Y. Then if g is (strictly or) circa-differentiable at
X, respectively if g is Hadamard differentiable and Y is finite-dimensional, one has
respectively

Ir(hog)(x) = &' (X)T(Irh(y)) := Irh(y) o g'(X), (4.26)
dp(hog)(x) = g'(X)T(dph(¥)) := dph(y) o g'(X). (4.27)

Proof. Let g be given by g(x,r) := (g(x),r). Since Ef = g~ !(E}), the result for the
Fréchet (resp. Hadamard) case follows from the calculus rule for the normal cone

to an inverse image and from the characterization given in Proposition 4.16 (resp.
Corollary 4.15). a

Taking indicator functions, we recover the geometric result we used.

Corollary 4.43. Let X,Y be Banach spaces and let g : X — Y be (strictly or)
circa-differentiable at X € X (resp. Hadamard differentiable at X and Y finite-
dimensional) with g'(x)(X) = Y. Then for every subset D of Y containing y :=
g(X), for C :== g7Y(D) one has Np(C,X) = ¢'(X)T(Nr(D,¥)) (resp. Np(C,X) =
g'(X)T(Np(D.y))).

A different inclusion for a composition is as follows.

Proposition 4.44. Let f =hog, where g: X —Y and h:Y — R. If g is stable at
X € X and if h is finite at y := g(X), then for all y* € dph(¥) := —dp(—h)(¥), one has

Ipf(X) CIp(y og)).
If g is tangentially compact at X and h(y) € R, then for y* € —dp(—h)(¥), one has

dpf(¥) C Ip(y* 0 g)(%).

Proof. Letx* € dr f(X),y* € 5ph(y) andletc € Ry, p > 0be such that ||g(x) — g(%)]|
< c¢|lx—%]| for every x € B(X,p). Then for every a > 0, B > 0, one can find
7,0 € (0,p) such that for x € B(%,7), y € B(3,8), one has

(@ x=3) —alx—x| < f(x) - f(3),
h(y) =h(3) = Blly =3l < 6",y =)
We may suppose ¢y < 8. Then for x € B(X,y) and y := g(x), we have y € B(7,0),
(@ x=%) — (a+cp)|lx— x| < h(g(x)) —h(g(x) — Bllg(x) — @)l
< (gl0) = g (®))-

Since o and B can be arbitrarily small, we have x* € dr(y* o g)(X). We leave the
proof of the second assertion as an exercise. a
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Now let us give a product rule that generalizes Leibniz rule. We use the directional
subdifferential, but a similar result holds with the firm subdifferential.

Proposition 4.45. Given f,g: X — R.. lower semicontinuous and finite at x € X,
letp=f-gandletX* € dpf(X), ¥* € dpg(X). If f(X) > 0, g(X) > 0, then one has
gX)X" + f(x)y" € dpp(X).

Proof. Let U be a neighborhood of X on which f and g are positive, and let
h:=logof | U, k:=1logog | U, setting log(eo) := co. Then Proposition 4.39 yields
(1/f(x))x* € dph(x), (1/g(X))y* € dpk(X). Since p | U = expo(h+ k), applying
again Proposition 4.39 and the sum rule, we get

S(®F 4+ FEY = exp(h(E) k(X)) (% " ﬁy) € ().

4.2.3 Rules Involving Order

The following results have no analogues in differential calculus. Their proofs are
easy applications of the definitions and Proposition 4.11.

Proposition 4.46. Let (f;);c be a finite family of functions on X that are finite at
x€X. Letg:=infie; f;, I(X):={iel: f;(x) =g(X)}.

(a) Ifforall j € I\I(X), fj is lower semicontinuous at X, then
org(®) = () orfi(x), dpg(x) = () I fi().
icl(x) i€l(x)

(b) Let h:= sup;c, f; and let S(x) := {i € I : fi(X) = h(X)}. Then

| | orfi®) | corh(x), <o | |J dfi(®) | CIph(x).

ieS(3) i€S(x)

These last relations are not equalities in general, as shown by the next example.

Example. Let f; : R — R be given by fj (x) :=2xforx e R_, fi(x) =xforx € Ry,
and let f>(x) := fi(—x) for x € R. Then h(x) := (f1 V f2)(x) = |x|, so that df(0) =
[—1,1], while d£;(0) = @ fori = 1,2. O

The next result is extremely useful. Its proof again is an immediate consequence of
Proposition 4.11 (set g(x,y) := p(x) and note that g < f, g(%,5) = f(%,¥)).
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Theorem 4.47. Let X,Y be normed spaces, let f : X x Y — R be finite at (%,y) and
such that f(x,y) = p(%), where p(x) := infycy f(x,y) for x € X. Then for d = JF or
d = dp,

X edp(x) = (x*,0) € If(x,y).

Proposition 4.48. Let f:=hog, where g:=(g1,...,8m) : X > R™" h:R" >R is
of class C' around y := g(X) and nondecreasing in each of its m arguments near'y,

with ' (¥) # 0. Then
Af(X) =H(y)o(dg1(X),...,0gm(X)). (4.28)

Proof. We give the proof for the firm subdifferential, the proof for the directional
subdifferential being similar. We use the fact that for some map v := (vi,...,vy) :
R™ x R™ — R continuous around (¥,¥) with #'(y) = (vi(3,),...,vm(3,y)) we
have

h(y) = h(z) =v(y,2)(y — 2).

Plugging y := g(x), z := g(X) into this relation and using the inequalities g;(x) —
gi(®) > (xf,x—%x) —e(x )Hx || fori € Ny, x7 € drgi(X), where g(x) — 0 as x — X,
we et () o (xj,...3,) € Ip (%), ~
Now let x* € dr f(X), so that by Proposition 4.7 there exists a function ¢ : X — R
differentiable at ¥ and satisfying ¢'(x) = x*, ¢ < f, ¢(X) = f(x). By assumption,
there is some j € N,, such that D ji(X) > 0; without loss of generality we may sup-
pose j = m in order to simplify the writing. The implicit function theorem ensures
that the relation z = h(y) is locally equivalent to a relation y,, = k(y1,...,Ym—1,2),
where k is of class C!. Setting y(x) = k(g1(x),...,gm_1(x),0(x)), we get @(x) =
h(g1(x),...,gm—1(x),¥(x)) and we have y(x) = gu(X), ¥ < g around X, hence

*

X, =y (x ( ) € drgm(X). The first part of the proof shows that for all x} € drgi(X),
fori € N,,_1 we have #'(¥) o (x},...,x},) € dp@(X) = X*. Thus (4.28) holds. O

The next proposition is more special than the preceding general rules.

Proposition 4.49. Let X and Y be normed spaces, let f : X — R be a lower
semicontinuous function, let g : Y — R be Gdteaux differentiable at some y € Y
with g'(y) # 0. Let h: X x Y — R be given by h(x,y) := max(f(x),g(y)). Suppose
that for some ¥ € X one has f(X) = g(3). Then, for d = dp or d = dr and for
(X*,5*) € Oh(X,y) withy* # g'(¥) there exists A € (0,1] such that

(x7,57) € (1 =A)f(x) x 19g()-

Proof. Without loss of generality we assume that x =0,y =0, f(x) = g(¥) =0. Let
(x*,5*) € dh(x,y) with * # ¢'(¥) # 0. Let v € Y be such that g’'(y)v = 1. For ¢t > 0
small enough we have h(0,1v) = g(¢v), hence 1 = g/ (y)v = hmHo+ (1/t)h(0,1v) >

((x*,5%),(0,v)) = (¥*,v). Similarly, for all w € Y such that g’(y)w > 0 we have
grw > Fw). The same is true if g'(¥)w > 0 as follows by taking a sequence
(wn) — w such that g'(¥)w, > 0 for all n. Thus there exists A > 0 such that
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/

A > 0. Observing that 4(0,—¢v) = 0 for ¢+ small enough, we get (3*,—v) <0,
hence 1 — A = (1 —24)(v*,v) = (*,v) > 0. Now, given u € X, s > fP(x,u), let
us show that As > (¥*,u); that will ensure that (¥*/A,—1) € Np(epif, (%, f(X))) or
X" /A € dpf(%). Taking a sequence ((s,,tn,uy)) — (5,04,u) such thatz,s, > f(t,u,),
setting s := 1,7 'g(t,sv), we note that (s,) — s and (s”/) — s for s/ := max(s,, s’,).
Since h(tyuy, tysv) < t,sh for all n, we get (X*,u) + (¥*,sv) < s or (x*,u) < As. The
case d = dp is proved.

Now let us consider the case of the Fréchet subdifferential dr. As above, we
have y* = (1 — A)v* for v* := ¢'(y), A €]0,1]. Suppose X* /A ¢ Jr f(X) : there exist
o > 0 and a sequence (u,) — O such that f(u,) < s, := (¥*/A,u,) — & ||uy|| . Since
(g(spv)/sn) — 1, there exists a sequence (0,) — 0 in Ry such that h(uy,s,v) <
(14 0)sp. Then, for some sequence (g,) — 0 one gets

v —y* = Av* for v := g/(y) and ¥* = (1 — A)v*. The assumption y* # g'(y) yields
( v

(1+0n)sn = (X un) + (V5 50) — Enlllutn]| + 50 [[V]])
> Asp+ 0 [[un| + (1 = A)sp — &n([[unl + s [[V])-

Then one has
([oul + €[V [sn] > (On+&n[|[VI])sn > (A — €1) [|un]|

and |s,| < (|[¥*|| /A + o) ||uy ]|, a contradiction since (|0,| + &, ||v||) — O. 0

Remark. The conclusion cannot hold in general when y* = g/(y) = 0, as shown by
the example X =Y :=R, f(x) = min(x,0), g(y) =0forallxe X,y €Y, (x,3) =
(0,0). O

Exercise. In the case d = dp and 0 ¢ dpg(y), the differentiability assumption on g
can be relaxed to epi-differentiability at y in the sense that g (y,-) = g/(¥,-), since
then 7P ((%,¥), (u,v)) = max(fP (%,u),g"(y,v)) for all (u,v) € X x Y.

4.2.4 Elementary Rules for Marginal and Performance
Functions

Nonsmoothness appears when one takes suprema or infima of families of smooth
functions. Still, the tools we have presented can be used. In the present subsection,
given a normed space X, a topological space S (for instance a finite set with the
discrete topology), and f : X x § — R, we limit our study to elementary rules
concerning the marginal function m and the performance function p given by

m(x) :=sup f(x,s),  p(x):=inff(x,s), x€X.
ses seS
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We observe that we cannot pass from a result about m to a result about p, because
in general, for d := dp or d := dr one has dp(x) # —d(—p)(x): performance
functions are quite different from marginal functions.

Setting f; := f(-,s) for s € S and

M(x)i={s€S: fx,) =m(x)},  P(x)i={s€S: f(x.5) = p()},
the following observation follows from Proposition 4.11, noting that p < f;, p(x) =
fs(x) when s € P(x) and f; <m, f;(x) = m(x) when s € M(x).

Proposition 4.50. For every x € X, s € P(x), x* € dp(x) one has x* € d fs(x).
For every x € X, s € M(x), x* € df;(x) one has x* € dm(x).

More precise results can be given under various assumptions. The following
result is one of the simplest cases. We assume that f: X xS — R is a lower
semicontinuous function such that the following assumptions hold:

(P1) f is differentiable at X with respect to its first variable, uniformly with respect
to the second variable (or equivalently, the family (f;);cs is equi-differentiable
at X): there exists a modulus i such that for every (v,s) € X x S one has

[fsG+v) = £:) = D] < u(lvID IvI]-

(P2) The mapping s — D f;(X) is continuous from S into X*.

Proposition 4.51. IfS is compact, under assumptions (P1), (P2), one has
drm(x) =co{Df;(X) :s € M(X)},
drp(E) = (] {DAF)}

sEP(X)

The proof is left as an exercise that the reader can tackle while reading Sect. 4.7.1

Exercises

1. Show that if X is a normed space and f := go/, where £ : X — Y is a continuous
and open linear map with values in another normed space and g : Y — R is locally
Lipschitzian, then dpf(x) = dpg(£(x)) o £. Can one replace ¢ by a differentiable
map? by a differentiable map that is open at x?

2. Show by an example that the inclusion d(g+ h)(X) C dg(x) + dh(%) is not valid
in general. Explain why this inclusion would be more desirable than the reverse one.

3. Prove Proposition 4.34.
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4. Prove Corollary 4.35. [Hint: If f := g+ h, apply relation (4.20) to g = f + (—h).]
5. Give arule for the subdifferential of a quotient.

6. (a) With the assumptions and notation of Proposition 4.46, show that for all v € X
one has gD (f, V) = minie](f) f;D (27 V), hD (f, V) = maXiGS(Y) le (Ev V).
(b) Show that in general, the inclusions of Proposition 4.46 are strict.

7. With the assumptions and notation of Proposition 4.42, show that when Y is
finite-dimensional and g is differentiable, relation (4.26) can be deduced from (4.27).

4.3 Viscosity Subdifferentials

In the sequel, given two normed spaces X,Y and an open subset W of X, we say
that a map A : W — Y is F-smooth at X € X (resp. H-smooth at X) if & is of class
C' (resp. D') at X, i.e., if h is Fréchet (resp. Hadamard) differentiable on an open
neighborhood of ¥ and if /' is continuous at X (resp. dh : (x,v) — h'(x)v is continuous
at (%,u) for all u € X). We gather both cases by saying that & is smooth at X. We say
that & is smooth if it is smooth at each point of W. We say that a Banach space X
is F-smooth (resp. H-smooth) if there is some F-smooth (resp. H-smooth) function
j:=jx :X — Ry such that j(0) =0 and

((GGn))n = 0) = (([[xall)n —0). (4.29)

We gather these two cases by saying that X is smooth and we call j a forcing
function. Note that in replacing j by j2, we get the implication

((lxa[Da — 0) == ((J'(xa))n — 0) -

Condition (4.29) is more general than the requirement that an equivalent norm on X
be Fréchet (resp. Hadamard) differentiable on X \ {0}. On a first reading, the reader
may assume that j is the square of such a norm, although such an assumption is not
as general. Note that when j is a forcing function, the function & : X x X — R given
by k(x,x') := j(x—x') is a forcing bifunction in the sense of Sect. 1.6.

We first show that the existence of a smooth Lipschitzian bump function ensures
condition (4.29). Recall that b is a bump function if it is nonnegative, not identically
equal to zero, and null outside some bounded set (which can be taken to be By).

Proposition 4.52. If X has a smooth forcing function, then it has a smooth bump
function. If there is on X a Lipschitzian (resp. smooth) bump function by, then there
is a Lipschitzian (resp. smooth) bump function b such that b(X) C [0,1], b(0) =1
and (x,) — 0 whenever (b(x,)) — 1, so that j :== 1 — b is a forcing function. If by is
Lipschitzian and smooth, then b can be chosen to be Lipschitzian and smooth.
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Proof. 1If j is a smooth forcing function, then there exists some s > 0 such that
Jj(x) > s for all x € X \ Bx. Composing j with a smooth function # : R — R such
that #(0) = 1, h(r) = 0 for r > s, we get a smooth bump function b := ho j.

Let by be a Lipschitzian (resp. smooth) bump function with support in Bx. We
first note that we can assume by (0) > ¢ := (1/2)supbg > 0: if it is not the case, we
replace by by by given by b (x) := bo(kx +a), where a € By is such that by(a) >
(1/2)supbg and k > ||a|| + 1. We can also assume that by attains its maximum at 0
and that by(0) = 1. If it is not the case, we replace by by 6 o by, where 6 is a smooth
function on R satisfying 0(r) = r for r < ¢, 8(r) = 1 for r > by(0). Now, given
g€ (0,1) we set

b(x) = (1-¢%) Y, ¢™"bolg "),
n=0
with ¢° := 1, so that b(0) = 1 > b(x) for all x, b is null on X \ By, b is smooth
on X \ {0} as the sum is locally finite on X \ {0}. Moreover, since by, is bounded,
the series X»_¢"b(,(¢ "x) is uniformly convergent, so that b is of class C! (resp.
of class D). Furthermore, b is Lipschitzian on X when by is Lipschitzian, and for
x € X\ ¢*Bx one has

k
b(x) < (1-¢%) D ¢*" < 1=by(0),
n=0

so that (x,) — 0 whenever (b(x,)) — 1. The last assertion is obvious. O
The preceding result can be made more precise (at the expense of simplicity).

Proposition 4.53. Let X be a normed space. There exists a Lipschitzian smooth
bump function on X if and only if the following condition is satisfied:

H) for all ¢ > 1, there exists a function j : X — R that is smooth on X \ {0}, with
a derivative that is bounded on every bounded subset of X \ {0} and such that

VxeX, [lx]| < j(x) <cllx||. (4.30)

According to the sense given to the word “smooth,” we denote this condition by
(HF) or (Hp) whenever it is necessary to be precise. Let us note that replacing j by
j2 to ensure smoothness, condition (H) implies condition (4.29).

The fact that c is arbitrarily close to 1 shows that a result in which one uses the
differentiability of the norm on X \ {0} is likely to be valid under assumption (H).

We have seen that assumption (Hr) (resp. (Hp)) is satisfied when the norm of the
dual space of X is locally uniformly rotund (resp. when X is separable), and one can
even take for j an equivalent norm.

Proof. Let us first observe that condition (H) ensures the existence of a Lipschitzian
smooth bump function: it suffices to take b := ko j2, where k : R =R is a
Lipschitzian smooth function satisfying k(0) = 1 for r € (—, t] with & € (0,1)
and k(r) = 0 for r € [1,0). Considering separately the case in which the dimension
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of X is 1 and the case in which this dimension is greater than 1, we can prove that j
is Lipschitzian on By. Since j~'([0,1]) C By, ko j is Lipschitzian.

In order to prove the converse, we first define a function jj satisfying (4.30) on
Bx.Let g > 1 with ¢* < c. Using a translation and composing a smooth Lipschitzian
bump function with a smooth function from R to [0, 1], we may suppose there
exists a smooth Lipschitzian bump function b : X — [0,1] such that b(x) = 1 for
x € (1/q)Bx, b(x) =0 for x € X \ Bx. Let us set ¢ := 1, and for x € X,

Y "x X=—9d

We have g(0) = 4o, g(x) € Ry for all x € X \ {0}, since for every p > 0 the sum
in the definition of g is finite on X \ pBx, and g and hq are well defined (setting
ho(0) = 0), smooth, and Lipschitzian on X \ pByx. In fact, if x € By and if m := m(x)
is the least integer greater than —(In||x|| /Ing) — 1, one has (1/¢) < ¢ ||x|| < 1 and

qm 1 mi‘l \ m ; qm+1 -1
=3¢ <gx)<Dq=——,
q_l n=0 n=0 q_l
so that
x| < g™ <ho(x) < g ™' < g |Ix]. 4.31)

Since all the terms of the sum defining g except the mth are constant on ¢~ "By \
g " !By, the derivative of hq is

ho(x) = —q(g —1)((g — 1)g(x) + 1) %¢*"¥ (¢"x).

Setting B := sup,cy || (x)[|, we get || (x) || < q(g—1)ho(x)*¢*" B < g(g—1)B.
Thus, jo := hg is Lipschitzian on By, is smooth on By \ {0}, and by (4.31) satisfies
relation (4.30) on By.

Now let us define j via a “ traveling wave” in the following way. We first define a
function A, on 2"Bx by hy,(x) := 2"ho(27"x). Assuming, without loss of generality,
that ¢ < 2, we pick a smooth Lipschitzian function p, : R, — [0,1] such that
pu(r) =0 for r < 2"c2, p,(r) = 1 for r > 2"¢~!, and starting with jo := hg, we
inductively define j, ;1 : 2" "' Bx — R by juy1(x) = hyy1(x) forx € 271 Bx \ 2" By,

Juor(8) = (1 pulln(x))) )+ pain (s a () forx € 2'By.
Since hy(x) > 2"c~! when ||x|| > 2"¢~!, we have j, 1 (x) = 41 (x) forx € 2"By \
2"¢~ !By, so that j, 1 is smooth on int(2""!By)\ {0} inasmuch as j, is smooth on

int(2"Bx) \ {0}. Moreover, another induction shows that

Vx € 2" 1By, [x]] < jny1(x) < clflx]|.
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Finally, we observe that j,, coincides with j, on 21¢73By, hence on 2" !By, so
that j := lim,, j, is well defined and smooth on X \ {0} and satisfies the required
estimates. Moreover, the derivatives of 4, and j, are bounded on 2" By, so that the
derivative of j is bounded on every bounded subset. a

Now let us introduce the two viscosity subdifferentials we shall consider.

Definition 4.54. Let X be an arbitrary normed space and let f : X — R be a function
finite at X € X. The viscosity Hadamard (resp. Fréchet) subdifferential of f at X
is the set dy f(X) (resp. Y f(X)) of Hadamard (resp. Fréchet) derivatives ¢'(%) of
functions ¢ of class D! (resp. C!) on some neighborhood U of ¥ minorizing f on U
and satisfying ¢(x) = f(X).

When there exists a bump function of class D' (resp. C') on X, we may suppose
¢ is defined on the whole of X in this definition (however, the inequality ¢ < f
is required only near X). It seems necessary to make a distinction between dp and
dy even in smooth spaces. In contrast, since we shall show that 9y f = dr f for f
defined on a Fréchet smooth space, we can keep for a while the heavy notation 8}/ f-
The proof of the coincidence 8}/ f = drf uses the following smoothing result for
one-variable functions.

Lemma 4.55. Fora >0, let r: [0,a] — Ry be a remainder, i.e., a function with a
right derivative at 0 and such that r(0) = 0, r/_(0) = 0. Suppose b := supr([0,a]) <
+-oo. Then there exists a nondecreasing remainder s : [0,a] — R of class C' such
that s > r, s(t) < supr([0,2¢]) fort € [0,a/2].

Proof. Let ap = a, by := b, a, := 2 "a, b, := supr([0,a,_]) for n > 1, so that
(by) is nonincreasing and (b, /a,_1) — 0. Let us set my, := (1/2)(an + ayi1), ¢n :=
2(ay — any 1) >(by — b, 1) and construct s by setting s(0) := 0,
s(t):bn+1+cn(t_an+l)27 re [anJrlumn]v
s(1) :bn—cn(t—an)z, t € [my,ayl,
so that Dys(a,) =0, D,s(a,+1) = 0, s is continuous and derivable at a,, m, with
s(an) = by, s/(a,,) =0, s(mn) = (bn+bni1)/2, S/(mn) = cn(an — apt1)-
Thus s is of class C' and for € [a,1,an], s(t) > b1 > r(t), 0 < s(t)/t < bp/ani1 <

4b,/ay—1, so that s(t)/t = 0ast — 0. O

Theorem 4.56. Let X be a normed space satisfying condition (Hp ). Then for every
lower semicontinuous function f on X, 8}/ f(X), the viscosity Fréchet subdifferential
of f at X, coincides with dp f ().

Proof. Without loss of generality we suppose X = 0. Clearly, Y f(0) C dr£(0).
Given X* € dr f(0), consider the remainder
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r(t) :=sup{f(0) — f(x) + (x",x) : x € tBx }, reRy,

and we associate with it the remainder s of the preceding lemma, where a is chosen
so that supr([0,a]) < +ee. Then using j given by (Hr), the function ¢ defined by

(p(x) :zf(O)—i—()_c*,x)—s(j(x)), xejil((_ava))u

is of class C' and satisfies @(0) = £(0), @'(0) = X*, since s(t)/t — 0 ast — 0,
@ < f, since s is nondecreasing, s > r, and ||x|| < j(x) < c||x||. Thus ¥* € 9f f(X).
O

While in spaces satisfying (Hf) there is no need to distinguish the Fréchet viscosity
subdifferential from the Fréchet subdifferential, the situation is not the same for the
Hadamard subdifferential, even when assumption (Hp) holds. However, in a finite-
dimensional space one has dy = dp, since dY = Iy C dp = .

Let us study some relationships with geometrical notions.

If S is a subset of X and X € S, we denote by Ny (S,X) the (viscosity) Hadamard
normal cone defined by Ny (S,X) := dits(X). In the next statements, we just write
N(S,¥) for the viscosity normal cone associated with a subdifferential @ € {dy,dy }.
If F: X ==Y is a multimap between two normed spaces, the (viscosity) Hadamard
coderivative D}, F (%,5) of F at (¥,y) € gph(F) is defined by

gph(DpF (x,3)) == {(y",x") : (", =y") € Nu(gph(F), (x,))}-

Proposition 4.57. Let E be a closed subset of a Banach space X and letX € E. For
both viscosity subdifferentials 0 = dy, 8}/, one has N(E,x) = Ry ddg(X).

Proof. Since for every r € R, and every smooth function ¢ satisfying ¢ < rdg
around X, @(X) = rdg(X) one has ¢ < 1 near X, we get the inclusion R ddg(X) C
N(E,%).
Conversely, let ¥* € N(E,X), so that there exists a smooth function ¢ minorizing
1 around X and satisfying @(x) = 1£ (%), ¢’(x) = X*. Since ¢ is locally Lipschitzian,
we can find p, r > 0 such that the Lipschitz rate of r¢ on U := B(X,2p) is 1. Then
forx € B(x,p) and u € ENU, we have r@(x) < re(u) + ||x — u|| < ||x — ul|, hence
ro(x) <d(x,ENU) =d(x,E) by an easy argument already used. Thus rx* € ddg (%).
O

Let us note the following analogue of Corollary 4.15 and Proposition 4.16.

Proposition 4.58. Let E be the epigraph of a lower semicontinuous function f on
an arbitrary Banach space X and for X € domf, let X; := (X, f(X)). Then for both
viscosity subdifferentials, one has X* € d f(X) if and only if (x*,—1) € N(Ef,X¢).

Proof. Let us first consider the viscosity Fréchet case. Given X¥* € df(X), let ¢ be
a smooth function satisfying ¢ < f on a neighborhood U of X and ¢ (%) = f(%),
¢'(x) =x*. Then y : U x R — R given by y(x, r) := ¢(x) — r is smooth, minorizes
g and satisfies l[/(ff) =0= LE, ()_Cf), (x*,—1)= l[//()_Cf) € N(Ef,ff).
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Conversely, let (x*,—1) € N(Ef,X¢). Without loss of generality, we suppose
f(X) = 0. Let us pick a smooth function y on an open neighborhood W of x¢
in E x R minorizing 1z, and satisfying y(¥y) = 0 = 1¢,(%s), (¥*,—1) = ¥/'(¥y).
The implicit function theorem yields T > 0, an open neighborhood U of X, and a
smooth function ¢ : U — (—7,7) such that ¢(X) = f(%), (x,r) €U x (—=1,7) CW
satisfies y(x,r) = 0 if and only if r = ¢(x). By continuity of y/(-)(0,1), we may
suppose W (x,-) is decreasing on (—7,7) for all x € U. Since y(-,¢(-)) = 0, for
all ¥ < @(x) we get y(x,r) > 0. Since y < 1z, for all (x,r) € EfN (U x (-7,7))
we have (x,r) € epig. Thus ¢ < f on U. Moreover, differentiating the relation
v(,0(-) =0, we get¥ — ¢'(x) = (¥, —1) o (Ix, ¢’ (x)) = ¥/ (Xf) o (Ix, ¢/ (X)) =0,
so that X* € df(%).

Now let us consider the Hadamard case. The proof that (X*,—1) € N(E;,%y)
whenever X* € df(¥) does not need any change. For the reverse implication, we
assume again that f(X) = 0 for the sake of simplicity of notation and we pick a
continuous function y on a neighborhood W := U x [T, 7] of X := (X,7) in E x R,
smooth on int(W) and satisfying v < 1z, and y(3y) = 0 = 15, (¥y), (¥*,—1) =
y'(xf). By continuity of y’'(-)(0,1) and y, we may suppose y/(x,-) is decreasing
on [—7,7] for all x € U and y(x,7) > 0, y(x,—7) < 0 for all x € U. Thus, there
exists a unique function @ : U — (—7, 7) such that y(x,@(x)) =0 forallx € U. It
is easy to see by contradiction that ¢ is continuous. Theorem 2.81 shows that it is
of class D'; the rest of the proof is similar to the proof in the Fréchet case. O

Several rules for elementary subdifferentials can be extended to the viscosity
subdifferentials dy and dy . Let us state some of them for later use. Their proofs are
obvious.

Proposition 4.59. The viscosity subdifferentials are homotone in the sense that for
f > gwith f(X) = g(X) finite one has dg(x) C df(X).

Proposition 4.60. Given a lower semicontinuous function f on a Banach space X,
(x,7) € epif, (x*,7") € N(epif, (X,7)), one has (x*,7*) € N(epi f, (%, f(X))).
Proposition 4.61. (a) Let X and Y be normed spaces, let g : X — Y be smooth, and
leth:Y — R be finite aty. Let f :=hog, X € X, y := g(%). Then g'(X)T(Ih(3)) €
af(x). B

(b)If f: X XY — R is given by f(x,y) := g(y) for all (x,y) € X XY, then for all
X € X one has (x*,y") € df(x,¥) if and only if x* =0, y* € dg(p).

Proposition 4.62. Let X and Y be normed spaces, let g : X — Y be smooth, let
h:X — R be finite at X and k : Y — R finite at y := g(X) be such that h— ko g attains
its minimum at X. Then for all * € dk(y) one has g'(X)T(y*) € dh(X).
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Exercises

1. (a)Let f be finite and lower semicontinuous at x. Prove that x* € dp f(x) if there
is a Lipschitzian Gateaux differentiable function ¢ such that ¢'(x) = x* and f — ¢
attains a local minimum at x.

(b) Show that this implication cannot be reversed: it is possible that x* € dp f(x)
but that for no Lipschitz Gateaux differentiable ¢ the difference f — ¢ attain a local
minimum at x. Is this also true if f is Lipschitzian near x?

2. (a) Prove that in a space with a Fréchet (resp. Gateaux) differentiable renorm
there is a continuously Fréchet differentiable (resp. Lipschitz and Gateaux differen-
tiable) bump. [Hint: A convex function Fréchet differentiable at every point of an
open set is continuously Fréchet differentiable on the set.]

(b) We say that a function ¢ is a strict bump if (0) = 1, ¢(x) = 0 for x with ||x|| > 1
and 0 < @(x) < 1 forall x # 0. Prove that if there is a (continuous, Lipschitz, Fréchet
differentiable, Gateaux differentiable, Ck) bump function on X, then there is also a
strict bump with the same properties. [Hint: ¢(x + a) is a bump for every fixed
a, y(g,x) = (1 —&?)p(x) + e?¢(x/e) is a bump (as a function of x) as well as

fol v(e,x)de.]

4.4 Approximate Calculus Rules

Simple examples show that for d = dp or d = dF, the inclusion df(x) + dg(x) C
d(f + g)(x) cannot be reversed in general: take f = |-|, g = —f on X = R. Thatis a
pity, because the reverse inclusion would be most useful for calculus. However, we
shall show that calculus rules in the most useful direction can be obtained, provided
one accepts some fuzziness. We start with minimization rules. We treat the case
of composite functions and the case of sums at the same time. In the sequel, a
normed space is said to be smooth if it has a smooth (i.e., of class C' or of class D)
Lipschitzian bump function. Given a map g : W — Z between two normed spaces
(resp. a function f: Z — R finite at € W) and £ > 0, we use the respective notations

B(w,e,g) :={weB(W.e):|gw) —g(W)| <e},

4.4.1 Approximate Minimization Rules

In this subsection d can be either one of the viscosity subdifferentials or one of the
elementary subdifferentials dp, dr corresponding to the smoothness of the involved
spaces. We shall use the following simple fact: if f: X - R, g: Y — R, and k: X X
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Y — R are such that (x,y) — f(x) + g(y) — k(x,y) attains a finite local minimum at
(x,y) and if k is differentiable at (X,y), then k' (X,y) € 0 f (%) x dg(¥) (since f —k(-,y)
and g — k(x, -) attain local minima at ¥ and y respectively).

Theorem 4.63. Let X and Y be smooth Banach spaces, let g : X — Y be smooth
aroundx € X, and let f : X — R, h: Y — R be lower semicontinuous functions
finite at X and y := g(X) respectively. Suppose X is a robust local minimizer of f +
hog. Then for every € > 0 there exist x¢ € B(X,€,f), ye € B(¥,€,h), x5 € df(xe),
vi € dh(ye) such that ||y;)| . |lye — g(xe)|| < € and

X +ysog (xe) € eBx-.

We start with a simple proof that avoids technicalities. Under its additional
assumptions it shows that there exists some ¢ > 0 such that ||x}|| < ¢, ||yi]| < ¢
for all € > 0, which is valuable information for passage to the weak™ limit. With
slight changes it could be adapted to the case that g is a smooth map around ¥.

Proof. In the case that X and Y are finite-dimensional and endowed with Euclidean
norms, % is Lipschitzian with rate ¢ around y, and g is linear and continuous. Let
us identify X* with X and Y* with Y, and let us define a decoupling (or penalized)
function py, for r > 0, by

2 2
VoY) €X XY, prlxy) = F(0)+h() + [l —E|F 12 lgx) — Il
Let p > 0 be such that X is a minimizer of f + ko g on B[x,p], f is bounded below

by f(X) — 1 on B[x, p], and & is Lipschitzian with rate ¢ on g(B[x,p]) UB[y,p]. Let
(x;,y:) be a minimizer of p, on B[x,p] x B[y, p]. The inequalities

J@) +h() < fl) +h(g(x)) < flx) +h(ye) + 18 () — il
and p;(x;,y:) < pi(%,5) = f(X) + h(y) imply that
b =%+ 22 {lg () = wil|* < €l () = il
Thus ||g(x;) — || < €72 and ||x, —X| < £+, so that for > 0 large enough,
(x:,y:) € int(B[x,p] x B[y, p]). Since the last two terms of p, are smooth, for some
xf € df(xt),yf € dh(y:), the optimality condition (0,0) € dp;(x;,y;) can be written
X +2(x% —X) +2t23*(g(xt) —») =0, yi— 2t2(g(x,) —y)=0.

Plugging y; = 2¢*(g(x;) — y,) into the first equation, we get

X +g () =—20u —7%),
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so that [lx; +g*(¢) | < 26" and [|y7 . () — yi|| < 272, since ||y} < ¢, the
Lipschitz rate of & being ¢. The lower semicontinuity of f at X (resp. of & at y)
combined with the estimate f(x;) < f(%) +h(¥) — h(y;) shows that f(x;) — f(¥) as
1 — Hoo. O

Proof (general case). We use again a penalization procedure in order to get some
decoupling. But in the infinite-dimensional case, we need to invoke the smooth
variational principle of Deville-Godefroy—Zizler. The auxiliary function space W
we take is the space of bounded smooth functions on Z := X x Y whose derivatives
are bounded; we endow W with the norm

ke |kl == sup |k(x,y)|+  sup ||k (xy)]].
(xy)eXxy (xy)eXxyY

Since forall k € W, r— r~ ! ||k(r-)||, is bounded on [1, ), there exists some ¢z > 0
such that if z € Z is a ¢z /t>-approximate minimizer of a function p on Z, there exist
a function k € W with ||k[|, < 1/r and a minimizer z; of p+kin B(z,1/1).

Let us take some smooth (off 0) forcing functions jx, jy on X and Y respectively
satisfying ||-]| < jx <c|||I, ||']| < jr <c]|-|| for some ¢ > 1 and let us set

pi(x,y) = f(x) +h() + g (=% + 27 (g(x) —y), >0, (xy) €XxY.

Given € € (0, 1), we may suppose the norm of the derivative of j)Z( is less than £/3 on
some ball pBx. We take p € (0,¢€) such that X is a minimizer of f 4+ ho g on B[X, p],
f is bounded below by f(X) — &/3 on this ball, & is bounded below by A(7) — €/3 on
By, = g(B[x,p]) UBI[y,p], and sup{||g’(x)|| : x € B[x,p]} < m for some m > 1. Let
(ur,v¢) € B[X, p] x B[y, p] be such that

pl(”luvl) S lnfpl(B[XJ)] XB[y,p])+CZ[72, pl(utvvl) S pt(xuy)

Theorem 1.133 ensures that ((u;,v;)); converges to (¥,¥) when ¢t — +oo. In
particular, (u,,v;) € B(xX,p/2) x B(¥,p/2) for t > t with T large enough. We take
7:= 1(e) > max(2/p,3m/e) satisfying this requirement. Then for ¢ > 7, we have
B[(ulvvl)v 1/t] - B[(f,y),p].

Let us apply the Deville-Godefroy—Zizler variational principle with the space W
chosen above. It yields some k; € W with ||k, < 1/ and a minimizer (x;,y;) of
Pt + ke in B[(ur,v;),1/t]. Choosing a function € — t(¢) satisfying ¢(g) > 7(g), we
simplify the notation (x; ), Yy(¢)),£(€) into (xe,ye), 2. Since k;, j. j7 are smooth, the
optimality condition (0,0) € d(p; + k) (xe,ye ) can be written, for some x} € d f(x¢ ),
e € Oh(ye), = (2)' (xe — %), vi = (2 (8(xe) — ve), as

(xe +ug + 12 08 (xe),yg —12v;) + ki (xe,ye) = (0,0).
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Then ||y; — 2vi|| = |[Daki (xe,ye) | < 1/t < &/3m, |

e~ 29|18 (xe )| < /3 and
%8 + i o8 (xe)|| < llug |l + D1k (e, ye) |+ [ye — Ve |- || ' (ee) || < lluz ]| +2¢/3.
Moreover, we have p;(xe,ve) + ki (xe,ve) < pi(X,¥) + k/(X,¥), hence
bve = XI* + £ [lye — g(xe) > < j (ve = %) +17j7 (ve — glxe)) < 2/1+2¢/3.

Denoting by f an upper bound of the norms of j§ and ji, on B(X,p) and B(,p),
we get

lug |l < 2Bellxe =3I, [|vell < 2Bellg(re) —vell, [Iyell < 20°Bellg(xe) —vell+1/1,

X 2
Iyell- llg(xe) = vell < 2Ber? llg(xe) = yell* + (1/) llg(xe) = yell
<2Bc(2/t42¢e/3)+ (1)) (2/t+2¢/3)"/2.

Changing ¢ for a smaller ¢’ > 0, we can make these terms less than €.
Since h(ye) > h(y) — /3 and ki (%,5) — ki (xe, ye) < 2|lke |, < 2[kilyy < 2€/3,

||oo

flxe) < f()_c) +h(y) —h(ye) +kt(x,y) _kt(XSaye) < f(¥) +e,

we also ensure that | f(x¢) — f(%)| < € and similarly |h(y:) — h(¥)| < €. O

Taking for f the null function, we immediately get a rule for composition. Taking
X =7, g := Ix, the identity map of X, and changing 4 into g, we get a rule for sums,
which we state for our records.

Corollary 4.64. Let X be a smooth Banach space, let f,g : X — R be lower
semicontinuous functions finite at X € X. Suppose X is a robust local minimizer of
f+g. Then for every € > 0 there exist x; € B(X,€, f), ye € B(3,€,8), xi € df(xe),
yi € dg(ye) such that

(el + 11yelD)- llre = yell < &, xg+e € eBx-.

More generally, if X is a robust local minimizer of a family (fi,...,fx) of lower
semicontinuous functions on X that are finite at X (in particular if fi +---+ fi
attains a local minimum at X and if either f| is inf-compact around X or f5,. .., fx

are uniformly continuous near X), then for every € > 0, there exist x; € B(X, €, f;),
x} € dfi(xi) such that

max [[x/ || max ||x; —x;|| <&, xj+---+x; € eBy-.
i ij
Proof. To prove the second assertion one considers the diagonal map x — (x,...,x)

from X to X and sets f := 0, h(xy,...,x;) = fi(x1) + -~ + fi(xz), noting that
8h(x1,...,xk):8f1(x1)><--~><8fk(xk). O
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Let us pause to prove a result showing that subdifferentials are often available.

Theorem 4.65 (Ekeland-Lebourg). Ler f : X — R. be a lower semicontinuous
Sfunction on a smooth Banach space X. Then the set Gy := {(x,r) e X xR :r=
f(x), df(x) # @} is dense in the graph G of f. In particular, the domain Dy :=
{x€X:9f(x) £ @} of df is dense in the domain of f.

Proof. Let (%,7) € G and let € > 0 be given. Since f is lower semicontinuous, there
exists p € (0, €] such that f(x) > f(x) — € forall x € B:= B[x, p|. Ekeland’s principle
yields some w € B[%, p /2] that is a minimizer of f(-) +2p~'&||- — w]|| on B, hence
a local minimizer of this function. Corollary 4.64 yields some x,y € B[w,p /2] and
some x* € df(x), y* € 2p 'eBy such that ||x* +y*|| < & and |f(x) — f(w)| < &.
Then ||x—X|| < p < g, and since f(w) < f(¥), we have f(x) < f(¥) + € and also
f(x) > f(x) — ¢, since x € B. The second assertion follows immediately. O

Corollary 4.66. Let g: W — R be a continuous convex function on an open convex
subset of an F-smooth (resp. H-smooth) Banach space X. Then the set D of points of
W at which g is Fréchet (resp. Hadamard) differentiable is dense in W. In particular,
F-smooth Banach spaces are Asplund spaces.

Proof. This follows from Corollary 4.65 applied to f := —g (extended by +oco
outside some closed ball B C W), since a concave function f is Fréchet (resp.
Hadamard) differentiable at x whenever dr f(x) (resp. dpf(x)) is nonempty. O

The next result is a subdifferential form of the Borwein—Preiss variational principle.
It immediately derives from that principle (Theorem 2.62) and from the definitions
of the two viscosity subdifferentials 0 = 8}/ , OH.

Theorem 4.67. Let X be a smooth Banach space. There exists a constant Kk > 0
such that for every € > 0, every bounded-below lower semicontinuous function f,
and every u € X such that f(u) < inf f(X) + ke, one can find some z € B(u,€) and
some 2* € Af (z) satisfying f(2) < f(u)+e and '] < e.

We deduce from this result an approximate global minimization rule. For the sake
of simplicity, we give it for two functions rather than for k functions.

Theorem 4.68 (Approximate global minimization rule). Let X be a smooth
Banach space and let f, g € F (X) be such that \(f,g) is finite. Then for every € >0
there exist sequences ((xn,x)), ((yn,¥)) in the graphs of df and dg respectively
such that

(s +yall) =0, (4.32)

limsup(f(xa) +8(vn)) < A(f,8), (4.33)

i |, = yul|- ([l || + [yl + 1) = 0. (4.34)
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Proof. We provide X with a smooth forcing bifunction kx by setting kx (x,y) :=
j2(x—y), where j : X — R is smooth on X \ {0} and such that || -|| < j(-) <¢| - ||
for some ¢ > 1. It enables us to introduce the decoupling function

pe(x,y) i= f(x) + g(y) +1j*(x =), (x,y) €X*.

Since A(f,g) is finite, there exists o > 0 such that p := inf{f(x) + g(y) : (x,y) €
A(0)} > —eo, for A(er) := {(x,y) € X*: [|x—y|| < a}. Applying Theorem 4.67 to
the function p, + A (a) which is lower semicontinuous and bounded below, we get
some (X, yn) € A(er) and (uy, vy,) € 9 (P + 14 (er)) (X0, Yn) such that (|| (u;,v5) () — O
and (%) — 0 for %, := pu(xn,yn) — inf(pn + ta(a)). Then we have

A2 (0 —yn) < F () +8(vn) +17 (60 —yn) =10f(pn+ 1a (@) + W0 < AF,8) + Yo

yn)) — 0. Thus for n large enough, we have (x,,y,) € int(A(a)),

so that (j%(x, —
uhvh) e 8p,,(x,,,y,,) or

hence (u,
uy=xy+nz, vi=y,—nz, with x;€df(x,), ;€ Ign). 7= (%) (X —yn)-

Therefore (||x}+y:||) = (||lu}+vi]]) — 0. Relation (4.33) follows from the above
string of inequalities. Assuming that j satisfies relation (4.30), so that ‘ ’ () (x) ‘ ’ / |Ix]]
is bounded near 0, and observing that (nj?(x, —y,)) can be made as small as
required, we get (4.34). O

4.4.2 Approximate Calculus in Smooth Banach Spaces

In this subsection we devise calculus rules for the two viscosity subdifferentials
d = dr,dy, assuming that the spaces are correspondingly smooth. A parallel study
with dp is made in a supplement below.

If S is a subset of X, we denote by ps the seminorm on X* defined by

ps(x™) :=sup{{(x*,x) :x € SU(=S5)}.

Thus ps(x*) < € means that x* € £S° N e(—S)°. Let us note that the topology
associated with the seminorms pg, where K belongs to the family of compact
subsets of X, was given some attention in Chap. 1 for its interest as a substitute
for the weak® topology. Let us also recall that a family (fi,...,f;) of lower
semicontinuous functions on X is quasicoherent around X € domf; (i € Ny :=
{1,...,k}) whenever one of them is inf-compact around X or all but one of them
are uniformly continuous around X.

Theorem 4.69. Let (f1,...,fi) be a family of lower semicontinuous functions on
a smooth Banach space X. Suppose (f1,..., fx) is quasicoherent around X € domf
Jor f:= fi+ -+ fi. Then for all X* € df(X), there exists some m > 0 such that
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the following property holds. Given € > 0 and a compact subset K of X, there exist
Xi € B(X,¢€, f;) and x; € df;(x;) for i € Ny such that max; ||x} || . max; ; Hxi —xjH <eg,

i+l <m, pr(g++xg—X) <e
If X is F-smooth and if 0 is the Fréchet subdifferential, one can require that

[Ixi + - +xp =% < e, m?x||xf|\.11}a;x}’xi—xj|| <e.

Proof in the Hadamard viscosity case. Let ¢ be a smooth function such that ¢ < f
around X, (%) = f(¥), and ¢'(X) = X*. Since ¢ is of class D!, there exist some
m >0 and 8 > 0 such that ||¢’(x)||+ 1 < m for all x € B(X,) and fiy1 := —¢
is Lipschitzian on B(, ). Lemmas 1.124 and 1.125 ensure that X is a robust local
minimizer of fj +---+ fy + frr1- Given € € (0, 1] and a compact subset K of X, let
r > 1 be such that K C rBy and let @ € (0, 8] be such that pg (¢’ (x) — ¢’ (X)) < €/2
for all x € B(X, ). Corollary 4.64 yields x; € B(X,¢€, f;), xi € dfi(x;) for i € Ny
such that X + - +x{, | € (€/2r)Bx+, X441 € B(X, o), max; ||x}||.max; j ||x; —x;|| <
€. Then fo + - ~~+xz|| < HXZHH +¢&/2r < m, and we have

PR+ +xp —X) <rflaf 44 xp — @ () || + pr (0 (1) — @' (X)) < €.

Proof'in the Fréchet case. The proof in this case is similar, with K replaced by By
and ¢ being of class C'. One can also take f;,| := (¢/2)]|- —%|| —X* and use the
definition of d f(X). O

A corresponding result for composition is as follows.

Theorem 4.70. Let X and Y be smooth Banach spaces, let g : X — Y with closed
graph G, and let h: Y — Ru. be uniformly continuous around y := g(x) or lower
semicontinuous and inf-compact on the image under g of a closed neighborhood
U of X. Then for every X* € d(ho g)(X), there exists some m > 0 such that for all
compact subsets K of X, L of Y and every € > 0 there exist some (x,y) € B(X,€,g) X
B(y,€,h), y* € dh(y), v: € Y*, x* € D*g(x)(v*) such that ||x*|| + ||y* —v*|| < m and

pr(x"=X) <&, pL(y"—v) <e. (4.35)
If X and Y are F-smooth and if d = dr, one can require that
=%l <e |y = <e. (4.36)

When g is differentiable at x, from the observation following Definition 4.24, one
gets x* =v* o Dg(x), so that this result is an approximate version of the composition
theorem for derivatives. The inf-compactness assumption on % is easily satisfied
when X is finite dimensional.
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Proof. Let f1, f» : X xY — R., be given by fi(x,y) := 16(x,y), fa(x,y) := h(y),
so that h(g(x)) = inf{(f1 + f2)(x,y) : y € Y}. Suppose & is uniformly continuous
around y. Then f; is uniformly continuous around (¥,y), and by Theorem 4.47 and
a variant of it in the Hadamard viscosity case, (x*,0) € d(f1 + f2)(*,¥). Thus, given
€ > 0 and compact subsets K of X, L of Y, the preceding theorem yields some m >
0, (X,V) € B((f,y),&',fl), (uvy) € B(()_va)vgafZ)’ (X*7_V*) € afl(xvv)’ (M*vy*) €
df>(u,y) such that ||(x*, —v*) 4+ (u*,y*)|| < m and

sup{[(u* +x" =X, )| + |(y* —v*,v)|: (u,v) EK XL} < €

(resp. |lu"+x"=X"|| <eg, ||y =V <e).

Then (x,v) € G,i.e.,v=_g(x), |h(y) — h(y)| <&, x* € D*g(x)(v*),u* =0,y* € dh(y),
[lx*|| + [[y* — v¥|| < m and (4.35) or (4.36) holds.

When £ is inf-compact on g(U) for some closed neighborhood U of X, we take
a smooth function ¢ such that ¢ < hog near X, ¢(x) = h(g(x)), ¢'(x) = x*, and
we set f1(x,y) :=1g(x,y), f2(x,y) :=h(y), f3(x,y) := —@(x). We easily check that
(x,5,¥) is a robust local minimizer of f; 4+ f> + f3. Then we conclude as above. O

Now let us consider the important case of performance functions.

Theorem 4.71. Let V and W be Banach spaces, V being smooth, let f : V — Ra
be a lower semicontinuous function, let A :V — W be a surjective continuous linear
map, and let p : W — R be the performance function given by

p(w) :==1inf{f(v) :ve A (w)}.

Givenw € p~'(R), w* € dp(W), € >0, a compact subset K of W, there existv €V,

v € df(v), w* € W* such that Av € B(w,¢€), f(v) < p(w)+¢&, [V —AT(w")|| <&,

pxk(W* —W*) < &. Ifv € A~Y(W) is such that f(V) = p(W), one can take v € B(v,€).
IfV is F-smooth and if d = dr, one can require that |w* —w*|| < €.

Exercise. Simplify the statement into the following: given w € domp, w* € dp(w),
€ >0, acompact subset M of V, there exist v € V, v* € d f(v) such that Av € B(w, €),
f(v) <p(W)+e, pu(v: —ATWw") < €. [Hint: To see this, one can omit w*, pick u >0
satisfying M C uBy, change € into €' :=¢/(it + 1), set K := A(M), and note that
pu(V —ATw*) < p[[v —AT(W")|| < pe’, pu(ATw* —ATW") = pg(w* —w") <¢€',
so that the sublinearity of pys ensures that pyy (v —ATW*) < e'u+¢' =¢€.]

Proof. Let us first consider the Hadamard viscosity case. Let ¢ := max(||A||,1) and
let y be a function of class D' such that y(w) = p(w), ¥/ (W) =w*, v < p on
B(w,p) for some p > 0. Given € > 0 and a compact subset K of W, let 1 > 0,
6 € (0,p) be such that ||y (w)|| < A, px (v (w) —w*) < & whenw € B(w, §). Taking
a smaller § if necessary, we may assume A8 < &, § < &. Letv € A~! (W) be such that
f(¥) < p(w)+€d/4c. Thenvis an (€6 /4c¢)-minimizer of the function g: v f(v) —
y(Av) on B[v, 8 /c], since f(v) — w(Av) > f(v) — p(Av) > 0. The Ekeland principle
yields some # € B(v,8/2c¢) that is a minimizer of g+ (¢/2)]|- — | on B[v,0/c]
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and is such that g(u#) < g(¥). Then Corollary 4.64 yields some v € B(#,6/2¢) C
B(v,6/c),v* € df(v), z" € (¢/2)By+ such that [|[Av — || < 6, [V —AT(W*) —z*|| <
€/2, px(w* —w*) < € for w* := y/(Av), hence ||v* — AT(w*)|| < €, and since

f(@) = g(@) + w(Au) < g(v) + y(AV) + A [|[Au - AV|| < f(v) +&/2 < p(W) + &,

we can ensure that f(v) < p(W) +&. When ¥ € A~! (W) is such that f(¥) = p(W),
one can choose that v and get v € B(v,8/c) C B(V,¢€).

The Fréchet case is similar. Then given € > 0, we require that ||y (w) —Ww*|| < &
for all w € B(w,0) so that ||[w* —w*|| < € for w* := y/(Av). O

Taking for A a projection, we get the following special cases.

Corollary 4.72. Let W and X be smooth Banach spaces, let f: W x X — R.. be
a lower semicontinuous function, and let p : W — R., be the performance function
given by

pw) :=1inf{f(w,x) :x € X}.

Given w € p~'(R), w* € dp(W), € > 0, a compact subset K of W, there exist w €
B(w,e), x € X, (w*,x*) € df(w,x) such that f(w,x) < p(W)+ €, px(w* —w*) <&,
el <e.

If d = dp and if W and X are F-smooth, one can take w* € B(W*, ).

Corollary 4.73. Let W and X be H-smooth Banach spaces, let j: W x X — R.. be
a locally Lipschitzian function, let G : W =2 X be a multimap with closed graph, and
let p: W — R, be the performance function given by

p(w) :==inf{j(w,x) :x € G(w)}.

Givenw € p~'(R), w* € dgp(W), € > 0, a compact subset K of W, there exist u,w €
B(w,e), v e G(u), x € B(v,e), v € X*, u* € D};G(u,v)(v"), (W*,x*) € du j(w,x)
such that | j(w,x) — p(w| < &, px(u* +w*—w") <eg, [|x* —v|| <e.

IfW.X are F-smooth and wW* € dp p(W), one can require that u* € Dy, G(u,v)(v*),
(w*,x*) € dp j(w,x), and ||u* +w* —W*|| < €.

Proof. In the preceding corollaries, set f := j+ 1. Applying the fuzzy sum rule
would just give ||x* —v*|| < m. Thus one returns to the proof of Theorem 4.71,
in which was obtained a minimizer # € B[v,6/2c| of the function v — f(v) —
v(Av) + (¢/2)|lv—1| on B[v,8/c|. Thus, one can apply Corollary 4.64 to get
some (u,v), (w,x) € B(u,0/2¢) C B(v,0/c), z € B(w,8), (w*,x*) € duj(w,x),
7=y (2), (u*,—v*) € Nu(G, (u,v)), u}y, € (€/2)Bw+, uy € (¢/2)Bx~, such that

")+ (", =) = (2,0) + () | < €/2,
and hence u* € Dy Glu,v)(v"), [x* —v*|| <&, [w* +u* —2'] < e, pr(c’ — ")

€/2. Taking K > 1 such that K C kBy and changing € into £/2x, one gets pg(w

<
+
u* —w*) < € using the relation px < k||-|| and the sublinearity of pg. O

The particular case of a distance function deserves special mention.
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Theorem 4.74 (Approximate projection theorem). Let X be an H-smooth Ba-
nach space, let E be a closed subset of X, and letw € X \ E, W* € dydg(w). Then for
every € > 0 and every compact subset K of X one canfind e € E, ¢* € Ny (E,e) N Sx+
such that |le —w|| <dp(W)+ ¢, pg(e* —w") <eg (", w—e) > (1—¢€)|w—e|.

If X is F-smooth and if W* € dpdg (W), then for every € > 0 one can require that
le=W| <dp(w)+e e €drdi(e), [l —W[| <&, (e W—e) = (1—¢)[[Ww—el|.

Proof. In the preceding corollary we take W := X, G being the multimap with graph
W x E, j being given by j(w,x) := ||w —x]|, so that p = dg. Given w* € duydp (W),
€€ (0,1), e <dg(w), and a compact subset K of X, let k > 0 be such that K C kBx
and let u,w € B(w,g/2), e :=v € E, x € B(v,e/2), v* € X*, u* € D}, G(u,v)(v*),
(W*,x*) € du j(w,x) be such that j(w,x) < p(w) +¢, ||x* —v*|| <&, px(u* +w* —
w*) < &, as in the conclusion of Corollary 4.73. Then u* =0, ¢ := —v* € Ny (E, e),
Iow— x| < de ) + €. e — ]| = [v* — | < e,

[w—x[| = [[w—=v[| = [w=w| = |lv—x| = de(W) —& >0,
so that x* = —w* € Sx«, (W*,w —x) = ||w —x]||. Moreover, |le —W| < |[v—w| +
lw—w| < de(W)+3¢/2, pk(w" —w*) < &, px(ef—w*) < x|V —x"|] < ke,
whence

pr(eg—W") < pxleg—w') + pr(w" —w") <e(k+1).

Furthermore,
W' w—e) = (W, w—x)—[[w—wl|—[lx—el = [w—x]| — &> [[w—e|| -3,
(eg.w—e) = (W', w—e) —g[[w—e|| > [W—e| -3 —&(de(W) + ).

Replacing e with e* := ¢/ He(*)H and € with some €’ < &, one gets the announced
inequalities.
When X is F-smooth and w* € drpdg (W), one can substitute By for K. m|

Exercise. Deduce from Theorem 4.74 that if W* € dpdg (W), one has |[w*|| = 1.

4.4.3 Metric Estimates and Calculus Rules

In this subsection we devise subdifferential calculus rules for the two viscosity
subdifferentials d = dr, dy by relaxing the Lipschitz or uniform continuity assump-
tion of Theorem 4.69. Instead of it, we use some metric estimates. A first rule
concerns the normal cone to an intersection. It is an immediate consequence of
Propositions 4.57, 4.59 and Theorems 4.69, 4.74.

Theorem 4.75 (Normal cone to an intersection). Let (Si,...,S;) be a family
of subsets of a smooth Banach space satisfying the following linear coherence
conditionatx € §:= 81N --- NSy for some c >0, r >0,
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Vx € B(x,r), d(x,S) <cd(x,81)+ - +cd(x,S). (4.37)

Let ¥ € Np(S,X) N Bx=. Then for every € > 0 one can find x; € S; N\ B(X,€) and
xf € Np(Si,xi) NeBx» such that Hx’l‘ +- 4 —)‘C*H <e.

When 3* € Ny (S,X), there exists some c¢(X) > 0 such that for every € > 0 and
every compact subset K of X one can find x; € SiN\B(X,€) and x; € Ny (Si,x;) N
¢(X)Bx+ such that pg(x; +---+x; —X") < &.

Using the fact that the epigraph of the maximum of a finite family of functions is
the intersection of the epigraphs of the functions, we get the following rule.

Theorem 4.76. Let (f1,...,fi) be a family of lower semicontinuous functions on a
smooth Banach space X and let f = max(fi,...,fi) be finite at X € X. Let S; be
the epigraph of f;. Suppose the family (S;) satisfies the linear coherence condition
(4.37) around (X, f (X)) and let X* € d f(X). Then for all € > 0 (resp. all € > 0 and all
compact subsets K of X), one can find x; € B(X, €, fi), x; € X* fori € Ny, a subset I
of Ny, t; € P fori € I such that x; € d fi(x;) fori € I, xj € 97 f(x;) for j € J:= Ny \ 1,
and respectively

Yi-1]<e, S+ Y —x | <e,
il il jel

Zti—l‘ge, pK(ZI[x;‘—i—ij—f*) <e.
il icl jeJ

Proof. When deducing this rule from Theorem 4.75 for S; := epi f;, we take into
account Proposition 4.58 and the lower semicontinuity of f; to ensure that for some
p € (0,€] such that f;(x) > fi(x) — € for x € B(X,p) we can replace a pair (x;,r;) €
epifi NB((x, f(xX)),p) with (x;, fi(x;)), so that f;(X) +¢& > r; > fi(x;) > fi(X) — €.
Then if (w},—#;) € N(S;, (xi,r7)) are such that | S5, (w},—;) — (¥, —1)|| < &, we
take / := {i € N} : 1; > 0} and we set x} :=w} /t; for i € I. For j € Ny \ I, we have

x;:=w} € 97 fj(x;). The Hadamard case is similar. O

Now let us consider the case of an inverse image F := g~ ! (H) by a differentiable
map g : X — Y, where H is a closed subset of Y. We say that the pair (H,g) is
linearly coherent at ¥ € X if for some ¢ > 0, r > 0, one has

Vx € B(x,r), d(x,F) <cd(g(x),H). (4.38)

Theorem 4.77. Suppose X,Y are smooth, g is smooth, and the pair (H,g) is
linearly coherent at X € F and X* € N(F,X). Then, when N = Ng, for all € > 0
there exist x € B(X,€), y € HNB(g(X),€), and x* € B(x*,€), y* € N(H,y), w* €
(¢ + €) ||x*|| By+ such that x* = Dg(x)T(w*), ||[w* —y*|| < e.

When N = Ny, given € > 0 and compact subsets K,L of X and Y respectively,
one just has w* € Y*, x* = Dg(x)T(w*), px(x* —X*) < €&, pL(w* —y*) < e.
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Proof. We may suppose r := ||x*|] > 0 and even that r = 1 by homogeneity. Let
y := g(X). The linear coherence condition and Proposition 4.59 ensure that x* €
cd(dpog)(x). Let us first consider the case d = dr. Then, Theorem 4.70 yields some
(x,2) € B(X,€,g) x B(y,€/2), x* € B(x*,¢€), 2" € ddu(z), v* € B(z*,€/c), such that
¢~ 'x* = Dg(x)T(v*). Applying the approximate projection theorem, we get some
y € H, y* € N(F,y) such that " — cz*|| < £/2, [y — 2] < dir(2) +£/2 < =5 +
£/2 <e. With w* := ¢v*, so that |[w*|| = c||v*]| < c(||z*|| + €/¢) < c+ €, we get the
required elements.

In the case d = dy, using Proposition 4.57, we take r > 0 such that X*/r € dydr (X)

and we make use of the Hadamard versions of the preceding arguments. a
A composition rule can be readily deduced from this result.

Theorem 4.78. Suppose g: X — Y is smooth, f := ho g for some lower semicontin-
uous function h on Y with epigraph H, and the pair (H,g X Ig) is linearly coherent
atXy:= (%, f(X)). Let x* € d f(X). Then, when d = df, for all € > 0 there exist some
x € B(x,e,f), y € B(g(x),e,h), x* € B(x*,¢), y* € dh(y), w* € B(y*,€) such that
* = Dg()T(w), I |- Iy — g(x) | < e.

When N = Ny, given € > 0 and compact subsets K,L of X and Y respectively,
one just has px(x* —X*) < g, pL(w" —y*) < &.

Proof. Since the epigraph F of f satisfies F = (g x Iz) "' (H) and since (¥*,—1) €
N(F,xy), taking € € (0,1/2), the preceding result provides some (y,s) € H N
B((g(x),f(x)),€') and some x* € B(x*, &), (*,—s*) € N(H, (y,5)), w* € B(y*,€’)
such that x* = Dg(x)T(w*), |s* — 1| < €’. We also have (y*,—s*) € N(H, ($,h(y))),
as is easily seen, hence y* := y*/s* € dh(y). Changing x*,w* into x*/s*, w*/s*
respectively, we get the result. The proof of the Hadamard case is left to the reader.

0

Recall that a family (fi,...,fx) of lower semicontinuous functions on X with
sum f is said to be linearly coherent or to satisfy the linear metric qualification
condition around some ¥ € X if there exist ¢ > 0, p > 0 such that for all x € B(x, p),
(t1,...,t) € R¥ one has

d((x,t;+---+1),epif) < cd((x,t1),epifi) +---+ecd((x,t),epifr).  (4.39)

Theorem 4.79 (Ioffe). Let (fi,...,fx) be a family of lower semicontinuous
Sunctions on X and let X* € df (%) for f = fi+ -+ fi- If (f1,-..,fx) is linearly
coherent around X € X, then the conclusion of Theorem 4.69 holds.

Proof. Leth:X* — R.. be given by h(x) = fi (x1) +---+ fi(xx) for x := (x1,...,x)
and let H be its epigraph. Denoting by g : X — X* the diagonal map, we intend to
show that (4.39) implies that the pair (H, g) is linearly coherent. Endowing a product
with the sum norm, and taking the infimum over the families (71, ...,#) with sum ¢
in (4.39), we see that it suffices to show that for all (x,7) € X* x R we have

inf{d((x1,t1),epif;) + - +d((xx, 1), epifi) i t1 + -+t =1} < d((x,1),H).
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Given (x,1) € X* xR and A > d((x,t),H), we can find w := (wy,...,w;) € X¥,
s >r:= filw)+ -+ filwg) such that A > [jx; — w4+ - + ||xg — we || +
(s—o)*. Let r; := fi(wy), t; := ri — (r —1)/k, so that r; +--- + 1, = t, whence
(s—t)" >(r—t)"=(rm—n)"+ -+ (n—t)", and A > d((x1,11),epifi)+ -+
d((xx, 1), epify). Since A is arbitrarily close to d((x,r),H), the expected inequality
is satisfied.

Then, since # is separable, the conclusion of Theorem 4.78 yields the conclusion
of Theorem 4.69. Given ¢’ > ¢, we can even require that x7 € d fi(x;) with ||x}|| <
c|x]. O

Alternative, direct proof. Let ¢ and p be as in (4.39). Let A : X x R¥ — X x R be
defined by A(x,t1,...,t) := (x,t; + -+ -+ #); its transpose is given by AT(x*,¢*) =
(x*,t*,...,1*). Let F be the epigraph of f and let

h(x,ty,. .. t) = cd((x,t1),epifi) + -+ cd((x,t),epi fi),

so that (4.39) can be written h —dpoA > 0. Let 7; := f;(X), 7 := (f1,...,Ix), so that
h—dF oA attains it minimum at (¥,7). Given X* € d f(), by Propositions 4.57, 4.58,
one has (x*, —1) € rddp(x,7) for some r > 0. Then by Proposition 4.62, in which we
take k := dr, g := A, one has AT(¥*,—1) € rdh(y). Since h is a sum of Lipschitzian
functions, given € € (0,1), setting o := &/2(rc + 1), Theorem 4.69 and Proposi-
tion 4.61 yield some (x;,1;) € B((%,7;),€) and (u},—s}) € redd(-,epi f;)(xi,t;) such
that

1, —57,0, ... 0) 4+ (u,0,...,0,—57) — (F,—1,...,—1)| <o.  (4.40)

Thus, |1 —sf| < o, sf > 1—a > 1/2, and for x] :=u} /s}, one has x} € Jdfi(x;) by
Proposition 4.58 and

k k
e+ xp =) < /s — 1] + HZu}‘—)‘c* <o(l-o) et a<e.
i=1 i=1

Now let us consider the case X" € dy f(¥) and X is dy-smooth. Given € > 0 and
a compact subset K of X, setting x := sup{|jx| : x € K}, a = &/(2rcx + 2),
Theorem 4.69 and Proposition 4.61 yield some (x;,4) € B((%,#;),€) and some
(uf,—s}) € rcdpd(-,epif;) such that for L := K x [—1, 1]¥ one has

pr(ui,—s7,0,...,0) + -+ (u,0,...,0,—s5) — ", —1,...,—1)) < o,

hence px (u + - +uj —x*) < ocand |1 — 57| < et,..., |1 — s} | < & Then again we
have s7 > 1/2, x :=u /s} € dy fi(x;) by Proposition 4.58 and

k

pr(u)+px (Y uf =) <
i=1

oKrc
1—o

k
1

pr(xXf 4+ +xp—x) < Y -1
i=11%i
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When applied to a family of indicator functions f; := 1g,, the linear coherence
condition (4.39) coincides with (4.37), since d((x,1),epits) = d(x,S) +¢~ and since
t+— 1t~ :=max(—1,0) is sublinear.

For a given problem, the verification of the linear coherence condition or other
metric estimates may be a difficult task. Thus, it is appropriate to give criteria in
terms of subdifferentials. A key to such criteria is given by the following theorem.

Theorem 4.80. Let X be an F-smooth (resp. H-smooth) Banach space. Then for
f in the set F(X) of lower semicontinuous proper functions on X, the function
Or(x) :==inf{||x*|| : x* € df(x)} with d := JF (resp. 9 := du) is a decrease index
for f.

Proof. Given f € F(X), x € X, r,c > 0 such that f(x) < inf f(B(x,r)) + cr, we
will find some u € B(x,r) such that 6;(u) < c. Let ¥ € (0,r), ¢ € (0,c) be such
that f(x) < inf f(B(x,r)) + c'r'. Ekeland’s principle yields some v € B(x,r’) such
that f(v) < f(w)+c||lv—w]| for all w € B[x,7]. Then v is a local minimizer of
the function w — f(w) + ¢/||w — v||, so that Corollary 4.64 asserts that for some
ueB(v,r—r),u* € df(u) one has ||u*|| < c. Thus u € B(x,r) and 6 (u) <c. O

Exercise. Show that for f € .%#(U), where U is an open subset of an F-smooth
Banach space X, one has inf,cy |V| (f)(x) = inf{||x*|| : x* € drf(U)}.

Proposition 4.81 (Fuzzy qualification condition). Let X be a F-smooth space.
(a) Let (Sy,...,Sk) be a family of subsets of X and X € S := 1 N--- N S;. Condition
(4.37) is satisfied whenever the following alliedness condition holds: given (x;,), —
xinS; (xz”) in X* with x,, € Nr (Si,xin) NBxx for i € Ny, n € N, one has

(|]xt 0+ -+ +x,’;n||)n S50= (Hx;jnu)” —0, ieN;. (4.41)

(b) Let (f1,...,fr) be a family of lower semicontinuous functions on X finite at
X € X. Condition (4.39) is satisfied whenever the following criterion holds: given
(Xin)n — X in X such that (fi(xin))n — f(X), (X7 ,,,77,) € Np(epifi, (Xin, fi(xin))) N
By+«r fori € Ny, n € N, one has fori € Ny,

(et k), = 00 (o) = 0= ([lxdall), = 0, (i) = 0.

Proof. (a) Let f be given by f(x) :=d(x,S1)+ -+ d(x,S). By the local decrease
principle, it suffices to find some p >0, ¢ > 0 such that for allw € B(¥,2p) \ S and all
w* € dp f(w) one has ||w*|| > c. We may even replace ¢ and 2p by € := min(c,2p).
Suppose that this is not possible. Then, given a sequence (g,) — 0, in (0, 1), for all
n € N, there exist w, € B(%,&,)\ S, w}, € dr f(wy) such that |w}|| < &,. Leti(n) € Ny
be such that w,, & Sj,,). Taking a subsequence, one may assume that for some j € Ny
one has i(n) = j for all n € N. The fuzzy sum rule yields some w;, € B(wy, 6,),
with &, 1= d(wy,S;) and w},, € drd(-,S;)(Win) such that [[w] , + - +wp || < &.
Applying the approximate projection theorem (Corollary 4.74), for all n € N, we get
some X;, € S; and x},, € N(S;,x;,) such that ||x;, —wi,|| < &, [|x], —w}, || <&/2,
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hence (x;,) — ¥ and [|x7, || > 1/2, a contradiction to our assumption, since we can
replace x;, with x7, /r, with 7, := max(||xj ,[[,....[lx; /) = 1/2 in order to get
elements of Np (S;,Xi ) N By satisfying [[x] ,/rm+ -+, /ral| < 26

Assertion (b) is a consequence of assertion (a). Let us note that in fact assertion
(a) is equivalent to assertion (b). a

Let us turn to a rule for a composition f :=ho g, where g : X — Y is a map with
closed graph between two smooth Banach spaces and / is a lower semicontinuous
functionon Y, X € X,y := g(¥) € domh, assuming the coherence condition that there
exist some ¢ > 0 and some p > 0 such that for all x € B(X,p), y € B(¥,p), r € R
one has

d((x,r),epif) < cd((y,r),epih)+cd((x,y),gph g). (4.42)

Theorem 4.82. Suppose f,h,g satisfy the preceding condition. Then for all X* €
Jr f(X) and all € > 0 there exist some (x,y) € B(X,€,8) X B(y,€,h), y* € drh(y),
v¥ € (c+&)||x*||By+, x* € B(X*,€) such that |v* —y*|| <&,

¥ € Dg(x)(v).

Proof. Let H be the epigraph of & and let 15 be the indicator function of the graph
G of g. Then for all (x,y) € X x Y we have f(x) < j(x,y) := h(y) + 15(x,y) with
equality for (x,y) = (X,¥). Thus, denoting by px (resp. py) the canonical projection
(x,y) + x (resp. (x,y) — ¥), we have (x*,0) = (px)T(x*) € dj(%,¥). In order to
apply Theorem 4.79, let us check that (Ao py, 1) is linearly coherent.

Using the sum norm in X X ¥ x R, we have d((x,y,),epi(ho py)) = du(y,t),
d((x,7,5),epi1G) = dg(x,y) +5, fors 1= max(—s,0), dy(y,5-+1) < dy (1) +5

d((x,y,5-+1),epi ) 1= inf{ls 1 — |+ [l —ull + ly—v]| : > h(v), (w,v) € G}

<du(y,s+1)+dc(x,y) <du(y,t)+s +dc(x,y),
hence

d((x,y,s+1),epij) < d((x,y,1),epi(hopy))+d((x,y,s),epilg).

For each € > 0, Theorem 4.79 yields some (x,v) € B((X,¥),€), (u,y) € B((X,¥),€),
(0,y*) € dr(ho py)(u,y), (x*,—v*) € drig(x,v) such that |h(y) — h(3)| < €, and

[(0,y) + (x*, —v*) — (x*,0)|| < .

That means that v = g(x), [|[x—X|| +|v—Y| <&, lu—%|+|y—J| < &,y" € drh(y),
|h(y) = h()| < & x" € D*g(x)(v") and max([lx" —x*[|, [[y* —v*]}) <e. 0

Exercise. Devise a Hadamard version of the preceding result.
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4.4.4 Supplement: Weak Fuzzy Rules

Without coherence assumptions, the results one can get are not as precise and one
has to replace strong approximations by weak® approximations.

Theorem 4.83. Let f1,...,frx be lower semicontinuous functions on a smooth
Banach space X and let X* € dp(fi + - + fx)(X) for some X € X. Then for every
€ > 0 and every weak* neighborhood V of 0 in X* there exist x; € B(X,€, f;) and
xf € dfi(xi) fori € Ny (where d = dy or d = dr according to the smoothness of X )
such that

X+ =X €V,

diam(xl,...,xk).111<11?1<Xk|\xm <E.

Proof. Without loss of generality, we suppose ¥ = 0. Given € > 0 and a weak*
neighborhood V of 0 in X*, there exist » > 0 and a finite-dimensional subspace
L of X such that L+ 4+ rBy+ C V. Let £,&” > 0 be such that ¢’ +&” < min(e,r)
and let us denote by fi1 and fi,, the functions given by fi.{(x) = &' ||x|| —**(x),
Ji+2 := g with B:= pByx, where p > 0 is chosen in such a way that f1 +--- 4 fi42
attains its minimum on B at X; here we use the fact that the directional subdifferential
coincides with the firm subdifferential on the finite-dimensional space L. Since f
has compact sublevel sets, X is a robust local minimizer of (fi,..., fx12), so that by
Theorem 4.64, there exist x; € B(X,€”, fi), xf € dfi(xi) (i =1,...,k+2) satisfying

Xi+ o+ xi 0 €€ By, diam(xy,..., X5 12). 1<1§1<ak>5rz|\xf|| <é.

Since fi 2 (x4 ) is finite and since we may take €” < p, we have x;,, € LNintB and
Xjyo € 91z (xk42) = L. Moreover, since fi 1 is convex, we have ||x;, +¥*|| < €,
hence x} + - - +x; — X" +x;,, € (¢’ +€")Bx+ C €Bx+. The result follows. O

Taking k = 1 one gets an approximation result.

Corollary 4.84. Let f be a lower semicontinuous function on a smooth space X
and let X* € dp f(X). Then for every € > 0 and every weak™ neighborhoodV of 0 in
X* there exist x € B(X, €, f) and x* € d f(x) such that x* —X* € V.

The corresponding result for composition is as follows. It can be deduced from
the preceding theorem by a proof similar to that of Theorem 4.70.

Theorem 4.85. Let X and Y be smooth Banach spaces, let g : X — Y with closed
graph, andlet h: Y — R, be lower semicontinuous. Then for everyX* € dp(hog)(%),
every € > 0 and every weak* neighborhoods V,.W of 0 in X* and Y* respectively,
there exist some (x,y) € B(X,€) X B(7,€), y* € dh(y), v € Y*, x* € D*g(x)(v*) such
that
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X=xeV, y -—vew, (4.43)
(10D - lg () =yl < e (4.44)

Let us give a variant of Theorem 4.83. Taking d € {dp,duy, dr}, we say that X
is a d-subdifferentiability space if for every f € % (X) the set of points (x, f(x)) for
which d f(x) # @ is dense in the graph of f. For d € { dy, dr} this requirement is
less demanding than d-smoothness.

Theorem 4.86 (Ioffe). Let d € {dp,du, dr} and let f,g be lower semicontinuous
Sfunctions on a d-subdifferentiability space X and let * € dp(f + g)(X). Then for
every € > 0 and every weak™ neighborhood V of 0 in X* there exist x € B(X, ¢, f),
y € B(X,€,g), x* € df(x), y* € dg(x) such that x* +y* —x* € V.

Proof. (a) We first consider the case that X = 0 is a local strict minimizer of f + g
(i.e., for some V € .47(0), £(0) + g(0) < f(x) + g(x) for all x € V' \ {0}) and g is
locally inf-compact around X. This means that for some » > 0 and all s € R the set
{x € rBx : g(x) <s} is compact. Let p € (0,7/2), p < €/2 be such that f and g are
bounded below on 2pBy and X = 0 is a strict minimizer of f + g on that ball. Let &
be given by

h(x) :=inf{f(x+w)+g(w):wepBx} ifx€pBx, h(x)= oo otherwise.

Since g | 2p By is inf-compact, the infimum is attained for all x € p By, and moreover,
h is lower semicontinuous and h(X) = f(¥) + g(X). Let (x,h(x,)) = (¥,h(X)) be
such that dph(x,) # @ for all n. Let w,, € pBx be such that h(x,) = f(x, +wn) +
g(wy). Since f and g are bounded below on 2pBy, (g(w,)) is bounded, and since
g | 2p By is lower-compact, we may assume that (w,,) has a limit w in pBx. By lower
semicontinuity of f and g we get f(W) +g(w) < lim, h(x,) = h(X) = f(X) + g(%).
Since X is a strict minimizer in B(¥,2p) we must have w = 0. Thus, we can find
x € B(x,p,h) and w € pBy such that dph(x) # & and f(x+w)+g(w) < f(x+w')+
g(w') for all W € pBy. By Proposition 4.7, for x* € dh(x), we can find a function
¢ Hadamard differentiable at x with ¢’(x) = x* such that ¢ < h, ¢(x) = h(x). Then
forallu € X,

PLr+u) —o(x) < (flx+ut+w)+ew)) = (f(x+w)+g(w))
Sfletutw) = (flet+w),

x+u) —@(x) < (flx+utw—u)+g(w—u)) = (f(x+w)+g(w))

glw—u)—g(w),

IN

so that x* € dp f(x+w) and —x* € dpg(w). When d = dy (resp. d = dr), we can
suppose @ is of class D! (resp. of class C!), so that x* € df(x +w) and —x* €
dg(w). Since x+w € 2pBx and w € pBy and since p is arbitrarily small, using the
semicontinuity of f and g in the usual way, we get the result in this case. We even
have 0 € df(x+w) + dg(w).
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(b) Now let us turn to the general case. Again, we may assume X = 0. Changing g
into g —Xx*, we may also suppose ¥* = 0. Given a weak™ neighborhood V of 0 in X*,
we take a finite-dimensional subspace L of X and p > 0 such that pBy« + L+ C V.
Letk:=g+1.+(g/2) |||, where € can be assumed to belong to (0, p). Clearly, this
function is locally inf-compact around X and X = 0 is a strict minimizer of f + k.
According to step (a), we can find some v € B(X,&/2, f), w € B(X,€/2,k) and some
v e df(v), w* € dk(w) with v +w* = 0. Since w belongs to the domain of k, we
have w € L, hence w+ L = L. Now let us consider the function j given by

Jx) = (x) = (W x —w) + (/2)([lx = wl + [Ix[])-
It is such that g(x) + j(x) = k(x) — (W*,x —w) + (€/2) ||x — w||. Since w* € dk(w) C

dpk(w) and since the domain of k is contained in L, w is a strict local minimizer
of g+ j. Applying again the first step, we get some y,z € B(w,€/2) C €Bx and

some y* € dg(y), z* := —y* € dj(z). Using the fact that j is convex, we obtain
that z* € L+ + eBx+ —w*. Thus v* +y* = —w* —z* € L* + eBy+ with v* € df(v),
y* € dg(y). 0

A variant of Theorem 4.74 is as follows.

Theorem 4.87 (Refined approximate projection theorem). Let X be an H-
smooth Banach space, let E be a closed subset of X, and let w € X \ E, w* €
dndg (W). Then for every € > 0 and every compact subset K of X one can find e € E,
e* € dpdg(e) such that ||e —w|| < dg (W) + &, px(e* —w") < &.

Proof. Let y be a function of class D' around W such that y < dr and y(Ww) =
dp(w), ¥/ (w) =w*. We may suppose  is Lipschitzian with rate k > 0. Then for all
(w,x) € X X E one has ||w — x|| — y(w) > 0. Given € € (0, 1) and a compact subset K
of X, let p € (0,€/2) be such that px (v’ (w) — (14+p) ¥ (W)) < €/2, px(2px*) <
€/2 for all w € B(w,p), x* € Bx+. Let x; € E be such that |w—x¢|| < dg(w) +
min(kp?,&/2), where « is the constant appearing in the Borwein—Preiss variational
principle (Theorem 2.62) on X2 with the space BD' (X) x BD'(X). That result yields
some g,h € BD'(X) with lgll . <ps Il .. < p and some (we,ye) € B((W,xe),p)
such that (wg,ye ) is a minimizer of the function fg : (w,x) — tg(x) + f(w,x), where
fw,x) :=|lw—x|| — y(w) + g(w) + h(x): for all (w,x) € X X E,

[[w—xl| = w(w) +g(w) +h(x) = [lwe = yel — w(we) +g(we) +h(ye)-
The penalization lemma for the subset X x E of X? endowed with the norm
(w,x) — (14 k) ||w| + ||x|| ensures that (we,ye) is a minimizer of the function

(w,x) = f(w,x) + (14 p)de(x) on X? (we use the fact that f is Lipschitzian with
rate 1+ p and the relation dy «z(w,x) = dg(x) for all (w,x) € X?). The inequality

VueX, f(Ws +’4aye+”) +(1 +p)dE()’£ +u)> f(W€7y€) +(1 +p)dE()’£)
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can be expressed as follows: for all u € X,

—W(we+u) +g(we +u) +h(ye+u) + (14 p)de(ve +u)
> —y(we) +8(we) +h(ye) + (14 p)de(ve).-

Since y, g,h are Hadamard differentiable, one gets

V/(WS) - gl(Ws) - h/()’s) S (1 +p)aHdE()’8)-

Setting e := ye, e* 1= (1 +p) "1 (y/(we) — g'(we) — I (ve)), one gets the result. O

4.4.5 Mean Value Theorems and Superdifferentials

The mean value theorem is known as a cornerstone of differential calculus. It is
not less important for subdifferential calculus. In this section d is either dr or dy
and X is an F-smooth or H-smooth Banach space. A simpler version valid for soft
functions will be given in the next section.

We start with a fuzzy form of the Rolle’s theorem.

Theorem 4.88 (Fuzzy Rolle’s theorem). Ler f € % (X) be finite at X € X and let
y € X\ {X} be such that f(3) > f(x). Then there exist u € [x,y) := [x,3] \ {¥} and
sequences (uy) — u, () such that (f(u,)) — f(u), ul € df(u,) for all n and

liminf(u;,y — %) > 0, (4.45)
n

liminf(u’,x — 1) > 0 Vxex+R, (y—X), (4.46)
n

lim [[uy | d (1n, [, 3]) = 0. (4.47)
Proof. Let u be a minimizer of f on the compact set S := [x,y]. Since f(¥) > f(),
we may suppose u # y. Since g := 1y is inf-compact, for every € € (0, ||u —7]|)
Corollary 4.64 yields w,z € B(u,€),z€ S, w* € df(w), z* € N(S,v) such that

w2l <&, (W [+ 117D lw—zll <&, [F(w) = fu)] <e.

Since ||z —u|| < € < ||z—7||, the indicator functions of § and §’' := X+ R (¥ —X)
coincide on a neighborhood of z, and it follows that z* belongs to the normal cone
to " at z. Therefore, for every x € X+ R, (¥ —X) we have (—z*,x —z) > 0; hence
by |[w*+z*|| <&, (W,x—2z) > —¢€|lx—z| and (w",x —w) > —g|lx—z|| — €. Let
t € [0,1) be such that z = (1 —7)x+ 3. Taking x =y in the inequality (w*,x —z) >
—¢&||x—z|| and dividing by 1 —¢, we get (w*,y —X) > —¢||y —X||. Replacing € by
the general term g, of a sequence with limit 0, (w,w*) by (up,u};), we get all the
assertions. O
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Exercise. Given f € .#(X), %,7 € domf with f(X) = f(¥), show that there exist
sequences (u,) — u € (%,¥), (u}) such that (f(u,)) — f(u), ((u},y—%)) — 0,
(llu || d(un, [%,3])) — 0, liminf, (s, u — uy) > 0 and u)t € d f(u,) UI(—f)(uy) for
all n. [Hint: Take for u either a minimizer or a maximizer of f on [%,7].]

Let us get rid of the restriction f(7) > f(%).

Theorem 4.89 (Fuzzy mean value theorem). Ler f € % (X) be finite ar X € X.
Then for everyy € X \ {X} and for every r € R such that r < f(¥), there exist u € [X,y)
and sequences (uy) — u, (1) such that u), € d f(uy) for all n, (f(uy)) — f(u),

limirnlf<ufl,x— up) > (r—f()_c))H Vxe xX+Ri(F—%))\ [Fu), (4.49)
L. . X—ly r—f() _
liminf(u;, ”x_u”> 2= Ve, (4.50)
lim [[uz | d (n, [¥,3]) = 0. (4.51)

Note that for x = u, relation (4.49) yields

liminf(u’, u — uy) > 0. (4.52)
n

Proof. Lete® € X* be such that (¢*,y—X) = f(X) —r. Setting / := f+e¢*, we see that
h(¥) > h(X), so that we can apply the Rolle’s theorem to h. Observing that dh(u,) =
df(u,) + ¢*, we obtain (4.48) and (4.49) from (4.45) and (4.46) respectively, since
x—u=q(y—%) withq:=||x—ul|/[|[y—%| whenx € (X+R(¥—X)) \ [X,u). Now,
given x € [x,u), setting u = X+ s(y —X) with s € [0, 1), we have x =X+ ¢(¥ —X) for
somet <s.Thenu—x=(s—t)(J—X), |Ju—x|| = (s—1) ||y — ||, and (4.46) reads

liminf{u, x —uy) > {e*u—x) = [y =]~ |x —ul (f/Z) = 1),

so that the proof is complete. O

A more powerful version follows, y being replaced with a closed convex subset Y
of X and the segment [%,7] being replaced with the “drop”

D=[xY]:=co({x}UY):= U X,y :={(1-0)x+ty:ye¥, t€0,1]}.
yeY

Theorem 4.90 (Multidirectional Rolle’s theorem). LetY be a closed convex sub-
set of X and letX € X\ Y, D := [x,Y]. Suppose f € F(X) is lower semicontinuous,
finite at X, and bounded below on D + 6By for some ¢ > 0. Suppose Ny f =
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sup,~oinf f(Y +rBx) > f(X), or more generally, Ay f > Apf. Then for every € >0
there existu € D\Y, w € B(u,€), and w* € d f(w) such that | f(w) — Apf| < &,

(why—x) = —¢lly—x| Vyev, (4.53)
W' x—u)>—¢lx—ul| VxeD, (4.54)
(W]l [lw—u| <e. (4.55)

Proof. By assumption, £ := Apf := sup,.oinf f(D + rBy) is finite (and inf f(D +
0Bx) < ¢ < f(¥) < o). Taking o € (0, Ayf —Apf) and p € (0,0) such that
inf f(Y 4+ pBx) > Apf + o, we may assume € < min(c, p). The approximate global
minimization rule (Theorem 4.68) with g := 1 yields some w € X, w* € df(w),
u € D, u* € N(D,u) such that ||u—w|| <&, |f(w)—¢| <&, ||u*+w*| <e&. Since
D is convex, N(D,u) is the normal cone in the sense of convex analysis, so that for
all x € D, (u*,x —u) < 0. Combining this inequality with [ju* +w*| < €, we get
(4.54). If we had u € Y, we would have w € Y + pBy, hence f(w) > Apf + o,
a contradiction to f(w) < {+e&. Thus, u € D\ Y. Let s € [0,1), v € Y be such
that u := sv + (1 — s)x. Now, for every y € Y one has y :=sv+ (1 —s)y € Y,
y —u=(1-ys)(y—x) and hence

W'y =3) = (1=5) 1wy —u) > —(1—s5)""e [y = || = —e Iy -3l

and (4.53) holds. Relation (4.55) is a consequence of (4.34). a

Exercise. Inthe case that Y is compact, use the existence of some # € D minimizing
fonDto getforall € >0somew e B(u,e), w* € df(w) satisfying relations (4.53)—
(4.55) [Hint: Observe that 1p is inf-compact and use Corollary 4.64.]

Theorem 4.91 (Multidirectional mean value theorem). LetY be a closed convex
subset of a smooth Banach space X and letx € X, D := [x,Y]. Suppose [ € F(X)
is finite at X and bounded below on D + 6By for some 6 > 0. Let r e R, r < Ay f.
Then there exist sequences (uy) in D, (yn) inY, (wy) in X with (u, —wy) — 0, (W})
in X* such that u, € [X,y,], wj € df(wy) for all n and limsup,, f(w,) < f(X),
liminf(w!,y—%) > r— f(F)  Wev, (4.56)
n
Wyl d(wn, D) — 0. (4.57)

Proof. We may suppose X = 0, f(X) = 0. Let g, € (r — f(X) — &,r — f(X)), where
(&,) = 04, and letus set x| := (x,0) € X; :=X xR, Y} :=Y x {1},

Fa(x,2) = F(xX)+ (1 —1)qn, (x,1) € X =X xR.
Clearly, f, € #(X1), is bounded below on Dy + 6By xR, Where Dy := [x},Y;] and

M= Jim {70+ (1= 1)gu: d((e0). 1) < 8) = Avf > = ful).
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Given a sequence (&,) — 04, applying Theorem 4.90 to f, with € := g,, we
get some s, € [0,1), y, €Y, up : =X+ 5,(yn —X) € D, (Wn,ts) € B((ttn,51),&n)s
(wh,t¥) € dfy(wy,ty) such that (4.53)—(4.55) hold with u,w,w*, € replaced with
(UnySn)s (Wn,tn), (Wi 1Y), €, respectively. Then w) € df(wy), £ = —q,, and taking
(y,1) with y € Y in place of y in (4.53), we get

Wy =%) —ant&(lly—x[+1)=0
and (4.56) by passing to the limit. Moreover,
d(wﬂvD) < d((Wn,Sn),Dl) < d((Wn,tn),Dl) + |S7l - tl’l| ;

whence (||w}||d(wn,D)) — 0, since (||(Wi,qn) | - [|(Wn,tn) — (tn,$2)]]) — O, as shown
by the proof of the preceding theorem and relation (4.34).

When Ay f — f(%) > 0, Rolle’s theorem ensures that | f(w,) — Apf| < &,, hence
flwy) < f(X) + &. When Ayf — f(x) <0, similarly we may take (wy,t,) such
that f(wn) + (1 —12)gn < Ap, fu + &1 < Avf+ €. Since Ay f — f(X) — & < gn <
(1 —1,)gn, we get f(wy) < f(X) +2g, and limsup,, f(w,) < f(X). O

Remark. Setting x, := X+ s,(y, — X), we have the additional information that

1iminf<w;;,M> >0.
n ([ — ||

That follows from the choice (y,t) := (yn,sn) in (4.54), written here as
(Wi x —up) — qu(t —sn) + & (||x — un|| + [t —sn]) > 0. (4.58)

O

It is sometimes necessary to use the Fréchet (resp. Hadamard) superdifferential of
a function f, defined as dr f(x) := —dr(—f)(x) (resp. dpf(x) :== —dp(—f)(x))
for x € X. This concept is crucial for the study of Hamilton—Jacobi equations, for
instance. It can be related to the subdifferential of f by the following theorem. Again
€0*(A) denotes the weak* closed convex hull of a subset A of X*.

Theorem 4.92 (Approximation of superdifferentials). Lezr f: X — R be a lower
semicontinuous function. If X is an F-smooth Banach space, then foralle >0,x € X
one has

Irf(x) C " (9r f(B(X.€))) + eBx-.

Proof. Suppose, to the contrary, that there exist some € > 0, y € X, and y* €
Jr f(¥) such that y* ¢ C + eBx+, where C denotes the weak™ closed convex hull
of dr f(B(7,€)). Since eBx+ is weak™ compact, the set C 4 By is weak* closed
and convex. Since inf{(eu*,v) : u* € Bx-} = —¢||v||, the Hahn—Banach separation
theorem yields some & > 0, v € X with norm 1 such that

G v)+o <inf{(y*,v):y* €C} —¢. (4.59)
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However, by definition of dr (—f)(¥), one can find 6 € (0,€&/2) such that

Vy € B(¥,20), (=¥,y—=3 —¢€ly=3 <fO)-f0).

Applying Theorem 4.89 to X := ¥+ v, 3, and r := f(X) + (—7*,0v) — €0 < f(3),

one can find u € [%,y) and sequences (u,) — u, (1) such that u; € Jf(u,),
liminf, (u},¥ —X) > r— f(%). For n large enough one has u, € B(3,28) C B(¥,¢€),

(up,—ov) >r— f(x) — 00 = (=y*,6v) —€6 — atd,

or (u};,v) —e < (¥*,v) + a. This is a contradiction to (4.59). O
An estimate of the lower directional derivate can be deduced from Theorem 4.91.

Theorem 4.93 (Subbotin). Let C be a compact convex subset of an F-smooth
Banach space X and let f : X — R., be lower semicontinuous, finite at X € X. Let
s < inf{fP(%,v) : v € C}. Then for every € > 0 there exist some x € B(%,¢€, f) and
x* € dp f(x) such that (x*,v) > s forall v € C.

Proof. We first note that there exists some 7 > 0 such that for ¢ € (0, 7] we have
inf{ f(X+tv+12u) — f(X) : u € By, vE C} > st +12.
Otherwise, there would be sequences (#,) — 0+, (u,) in By, (v,) in C such that

(1/ta) (f (X + v +t,%’4n) —f(®) <s+1y.

Taking subsequences if necessary, one may assume that (v,) converges to some
v € C, and then one would get fD (x,v) <, a contradiction to the choice of s.

Taking a smaller T if necessary, we may assume that s7 + 7> < £/2 and that
for all w € [0,7]C + t>Bx we have w € €By, f(X+w) > f(X) — &, f being
lower semicontinuous. Let us apply Theorem 4.91 with ¥ := X+ 7C and r :=
fE) + T+ 1) < f(®) +&/2 <inff(Y +12Byx) < Avf. Let (u), (i), (sn),
(yn) be the sequences of that theorem, in X, X*, [0,1], and Y respectively, such
that u; € df(u,) for all n, (||(1 —s$,)X+ Spyn — un|) — 0, limsup, f(u,) < r, and
liminf, (u},y —X) > r— f(X) > st+ 12 forall y € Y. Taking y = X+ v, with v € C,
for n large enough we get (i), Tv) > st and for v, € C satisfying X+ tv, = y,,

%+ 50TV — ttn]| = |(1 = 50)X+ 5030 — ]| < 72,

hence u, € X+ €Bx, f(u,) > f(¥) — € and f(u,) <r+e/2 < f(x) + €. Thus, we
can take x 1= u,, X* 1= u,. O

The following consequence shows that Fréchet and Hadamard subdifferentials
are intimately related in F-smooth Banach spaces.
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Corollary 4.94. Let X be an F-smooth Banach space and let f : X — R.. be finite
atX € X and lower semicontinuous. Then for every € > 0 one has

dpf(x) Cco*(dr f(B(X,€))).

Proof. Let € > 0 be given. Suppose the announced inclusion does not hold. Let
X" € dpf(x)\co*(drf(B(X,¢€))). Applying the Hahn—Banach theorem, we can find
u € Sy and s € R such that

(x*,u) > s >sup{(x*,u) : x* € Irf(B(X,€))}.

Since fP(x,u) > (¥*,u) > s, we get a contradiction to the conclusion of the
preceding theorem in which we take C := {u}. O

Let us give some other consequences of the mean value theorem. The following
theorem generalizes a criterion for Lipschitzian behavior.

Theorem 4.95. Let f: W — R be a lower semicontinuous function on an open
convex subset W of a smooth Banach space X. Then f is Lipschitzian with rate r if
and only if for all x € W and x* € df(x) one has ||x*|| <r.

Proof. Necessity was given in Corollary 4.5. Let us prove sufficiency. Given X, y €
W, Theorem 4.89 yields u € [%,¥] and sequences (u,) — u, («) such that f(¥) —
f(®) < liminf,(u};,y —X) < r||x—y||. Exchanging the roles of X and y, one gets
If&) = fO) <rlx=7l. .
A connectedness argument yields the following consequence.

Corollary 4.96. Let f : W — R be a lower semicontinuous function on an open
connected subset W of a smooth Banach space X. If d f (x) C {0} for all x e W, then
f is constant on W.

Now let us consider some order properties. We use the fact that given a closed
convex cone P in a Banach space X we can define a preorder on X by setting x < x’
if X' —x € P. We say that a map f : X — Y with values in another preordered Banach
space (or in R) is antitone (resp. homotone) if f(x') < f(x) (resp. f(x) < f(*))
whenever x < x'.

Theorem 4.97. Let f : X — R be lower semicontinuous on a smooth Banach
space X preordered by a closed convex cone P. Suppose that one has d f(x) C P°
(resp. df(x) C —P°) for all x € X. Then f is antitone (resp. homotone).

Proof. Suppose, to the contrary, that there exist x,y € X satisfying x <y and f(x) <
f(). Let r € (f(x),f(y)). Then Theorem 4.89 yields u near [x,y] and u* € d f(u)
such that 0 < r— f(x) < (u*,y—x). This is a contradictionto y—x € P, u* € d f (u) C
P°. Changing P into — P, one obtains a criterion for f to be homotone. O

The special case obtained by taking P := R_ (resp. P := R_.) will be useful.
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Corollary 4.98. Let f : R — R., be lower semicontinuous and such that dr f(x) C
R (resp. dp f(x) CR_) forall x € R. Then f is nondecreasing (resp. nonincreasing).

4.5 Soft Functions

Although one can exhibit wildly nonsmooth functions, in many practical cases the
nonsmoothness is tractable. Such a fact leads us to point out a class of functions for
which the preceding approximate calculus rules turn out to be exact.

Definition 4.99. A lower semicontinuous function f : X — R.. is said to be F-soft
(resp. D-soft, resp. H-soft) at X if f(X) < +eo and if every weak® cluster point of
a bounded sequence (xj;) of X* such that there exists a sequence (x,) — X with
X, € dp f(xn) (resp. x;; € dpf(xy), resp. x; € du f(x,)) for all n € N belongs to dr f(X)
(resp. dp f (%), resp. du f(X)).

A function is F-soft (resp. D-soft, resp. H-soft) on a subset S of X if it is F-soft
(resp. D-soft, resp. H-soft) at each point of S. In the sequel, we often write soft
instead of F-soft or H-soft, according to the smoothness of X.

With this notion, a link between the three subdifferentials can be pointed out.

Proposition 4.100. Let X be a dr-subdifferentiability space and let f : X — Re
be F-soft (resp. H-soft) at X and Lipschitzian around X. Then dp f(X) = cl*(dp f (X))
(resp. dpf(x) = cI"(dn (X))

Proof. Since the set dp f(¥) is weak* closed and contains dr f(X) and dy f(X), the
inclusions cl*(dp f(X)) C cI*(du f(X)) C dpf(X) are always valid. Let ¥* € dp f(X)
and let V be a weak® closed neighborhood of 0 in X*. Corollary 4.84 yields a
sequence ((x,,x;,)) in the graph of dr f such that (x,) = X and xj, —X* € V. The
sequence (x;) being bounded has a weak™ cluster point x* that belongs to dr f (%),
since f is F-soft at . Then x* —X* € V. Thus ¥* € cl*(dr f(X)). The case of H-
softness is similar. O

It can be shown that important classes of functions are soft, but we just give simple
examples.

Example 4.1. If f is of class C' at X, then f is F-soft at . If f is of class D! at
X, then f is H-soft at X, since (f'(x,)) — f'(¥) for the weak* topology whenever
(xp) = %.

Example 4.2. If f is convex, then f is D-soft and F-soft on its domain. Here we use
the fact that dpf and Jr f coincide with the subdifferential d f of convex analysis,
so that when (x,) — 7 x and x* is a weak™ cluster point of a bounded sequence (x;;)
satisfying x; € d f(x,) for all n, then for all w € X, one has

FOw) = Bminf (f (o) + (5w = 0)) > £(x) + (0w —x).
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Example 4.3. The nonconvex function f on R given by f(x) = |x| —x? is soft on R.

This last example can be generalized using the following stability properties. They
provide many more examples; in particular, sums of convex lower semicontinuous
functions with smooth functions are soft.

Theorem 4.101. Let X and Y be smooth Banach spaces, let g : X — Y be smooth
around X € X, and let f € F(X) be soft at X, h € Z(Y) soft at y := g(X) and
Lipschitzian aroundy. Then k := f + ho g is soft at X and

I(f+hog)(®) =df(X)+h(3) g (%).

Proof. We just treat the case d = dp. Let ((wy,w))) be a sequence in the graph
of dk such that (w,) — ¥ and (w}) is bounded and has a weak* limit point
w* € X*. Given a sequence (g,) — 0, there exist some (iy,X,,y,) € B(wy, &) X
B(wy, &, f) x B(g(wn), &), x5 € df(x), yi € dh(yn), v € B(y},€,) such that
xXi+viog (uy) —wh € €Bx+. Setting ¢ := sup, ||g(un)||, we may suppose ¢ <
+oo and 7 = x + yi o g'(uy) — Wi € auBx+ for oy, := g,(c+1). Since (y}) is
bounded, we can find ¥ € Y* such that (w*,3*) is a weak™ cluster point of
((wh,y%)). Since (h(yn)) — h(¥) and h is soft at 3, we have 3* € dh(y). Then
(xf) = (Wi —yiog(uy) +7z:) has ¥ := w* —y* o g/(xX) as a weak™® cluster point
and since f is soft at ¥ and (f(x,)) — f(%) (as (k(wn)) — (X)), we get X* € df(%).
Therefore w* = X" +y* 0 g/(X) € df(X) 4+ dh(y) o g'(X) C dk(X), k is soft at X, and
the inclusion d f(X) + dh(y) o g'(X) C Jk(X) is an equality. O

Proposition 4.102. (a) If f is a separable function on X := X1 X --- X Xy, ie., if
F(x) = filxr)+ -+ fi(xg) for x := (x1,...,x¢), where fi,..., fx are soft functions,
then f is soft.

(b) Let X be a smooth Banach space and let fi,..., fi be lower semicontinuous
functions on X that are soft atX € X, f»,..., fr being Lipschitzian around X. Then
fi=fi+--+ fris soft at x and

Ifit -+ fi)X) =dfi(X) +- -+ fi(¥).

Proof. (a) The assertion stems from the relation d f(x) = dfi(x1) X -+ X df(xz).
(b) The result stems from Theorem 4.101 using the diagonal map g : X — X*~! and
h defined by h(y2,...,yk) := fa(y2) +--- + fe(yk), applying assertion (a) to .~ O

Theorem 4.103. Let (f1,...,fr) be a family of continuous functions on a smooth
Banach space X. Let f :=max(fi,..., fy) andletx€ X, [:={ie Ny : f;(X) = f(X)}.
If fi is soft at X and Lipschitzian around X € X for all i € I, then f is soft at X and

If(F) =co (U J ﬁ(%)) . (4.60)

icl
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Proof. By continuity, we have f = max;c; f; around X, so that we may suppose
I = Ni. By Proposition 1.129, the family (f;);c; satisfies (4.39) at each point of a
neighborhood of X. By Theorem 4.76, given sequences (g,) — 04, (w,) — X and
a weak™* cluster point w* of a bounded sequence (w;) such that w);, € dp f(w,) for
all n € N, for all i € I we can find x;,, € B(wy, &), X7, € dfi(xin), and t;, € Ry
such that '

‘tl,n'f' el — 1’ <&, "tl,nxT7n+ et +tk7nxlt,n _WZH < &

Since [0, 1]% x Bf;:l is compact (for the weak* topology), using subnets, we can
find a cluster point (#;,x7,z") of the sequence ((ti ), (x],),w,)n With z* = w*. Then
fh+-+t=1,w =nxj+--- . +1x;, and since f; is soft, x; € dfi(X). Thus w*
is in the right-hand-side C of (4.60). Since by Proposition 4.59 and convexity of
df(X), C is contained in d f(X), the softness of f and equality (4.60) are proved in
the Fréchet case. The Hadamard case is left as an exercise. a

The following version of the mean value theorem is close to the classical statement.

Corollary 4.104. Suppose f is lower semicontinuous on X and locally Lipschitzian
on a segment [%,5] of X and soft on it. Then there exist u € [x,¥) and u* € d f(u) such
that f(u) < max(f(z), £(5)) and

(" y=%) > f5) - f).

Proof. Let ((un,u;,)) be the sequence of d f provided by Theorem 4.89. Since (uy,)
converges to some point u € [¥,¥), the sequence (u;) is bounded. Since f is soft at u,
all of the weak* limit points of (u;) belongs to d f (). Passing to the limit in (4.48),
we get the result. O

Exercises

1. A function f : X — Re := RU{e} on a normed space X is said to be
approximately convex at X € domf if for every € > 0 there exists 6 > 0 such that for
all x,y € B(x,9), r € [0,1] one has

Flx+ (1 =1)y) <tf(x)+(1—=1)f(y)+er(l—1) =y

(a) Give examples of classes of functions satisfying such a property.
(b) Show that in a smooth Banach space, f is soft at X whenever it is approximately
convex at x.

2. Let us say that a closed subset S of X is soft at X € § if its indicator function tg is
soft at X. Show that if the distance function dy to S is F-soft at X, then S is soft at X.
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3. Prove that if X is F-smooth, and if a closed subset S of X is soft at X € S, then
the distance function ds to S of X is soft at X. [Hint: Use the approximate projection
theorem].

4. (a) Describe analytically the (filled) corolla C of a flower with n petals (usually
with n =3,4,5,6,12). Observe that the same solid can serve to describe the cupola
of the Duomo (Cathedral) of Florence built by Brunelleschi in 1420-1434. [Hint:
Let E = BN (r,B —e1), where B is the unit ball of R? for the Euclidean metric,
er = (1,0), ry := (2cos(m/n) +2)"/2. For k = 1,...,n, let Ry be the rotation of
angle 2k /n, let Ey := Ri(E), and let the festooned disk F of R? be defined as the
intersection of the family (Ey)j<k<y. Its boundary is composed of n arcs of circles.
Then set C := {(w,2) € F xR:0<z<h—h|w|*}.]

(b) Prove that F is a soft subset of the plane and that C is a soft subset of R3.

4.6 Calculus Rules in Asplund Spaces

The forthcoming separable reduction theorem is an important result of nonsmooth
analysis. It enables one to pass from fuzzy sum rules in spaces with smooth norms
to fuzzy sum rules in general Asplund spaces. Asplund spaces form the appropriate
setting for such approximate rules and for extremal principles. The proof of that
result is rather sophisticated and long and can be omitted on a first reading. It relies
on a primal characterization of the Fréchet subdifferentiability of a function at some
point. The latter stems from the characterization of subdifferentiability of a convex
function by calmness given in Lemma 3.29.

We also need the following extension result. In the sequel, given a function f on
X and a subspace W of X, we denote by f |w the restriction of f to W.

Lemma 4.105. Let W be a linear subspace of a normed space X and let g: X — R
be a convex continuous function. Givenz € W and zjy, € d(g|w)(z), there exists some
7 € dg(z) such that * |w= zjy.

Proof. By the Hahn—Banach theorem, there exists some y* € X* that extends zjy.
Let uy be the indicator function of W. Then we clearly have y* € d(g + w)(2).
Now, the definition of the Moreau-Rockafellar subdifferential shows that diy (z) =
W+ = {x* € X* : x*|y= 0}, and since g is convex continuous,

d(g+w)(z) = dg(z) + dww(z) = dg(z) + W.

Thus we can find z* € dg(z) satisfying y* —z* € W=, hence z* |w= zj; . O
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4.6.1 A Characterization of Fréchet Subdifferentiability

We devote the present subsubsection to a characterization of the nonemptiness of
the Fréchet subdifferential dr f(X) of a (nonconvex, nonsmooth) function f at some
point X of its domain, domf. We will use the following notion of approximate
Fréchet subdifferential. Given an arbitrary function f : X — R and € > 0, the &-
Fréchet subdifferential I f (%) of f atx € f~1(R) is the set

Iff(x) = {x* € X*: liminf frtw) — fx) = & w) > —g}.

w0+ [l -

Equivalently,
@) =()9"f(®)

n>e

where x* € X* is in 9" f(X) iff there exists some p > 0 such that
Ve pBy,  f(E+x)— f(7)— (Fx) >~ (4.61)

Clearly one has drf(¥X) = d2f(%). It is often simpler to use 9 f(¥) rather than
df f(X). In particular, when f is convex, one has 9¢ f(x) = d(f + || - —x]|) (X).

One can give a characterization of the nonemptiness of the sets d¢f(X) and
dr f(x) that parallels the one we gave in the convex case. For such a purpose, given
X € X, afunction f: X — R finite at X, and g,p > 0, denoting by B := By the closed
unit ball of X, we introduce the function féP given by

fEP(x):=f(x+x)— f(X)+¢€|x| forxepB, [P (x):=+oforxeX)\pB.

Lemma 4.106. Given an arbitrary function f : X — Re., X € domf, and € > 0, the
simplified e-subdifferential 9% f(X) of f at X contains some element of norm at most
c € Ry if and only if there exists p > 0 such that co(f¥P)(-) > —c|| - ||.

The relation co(f4*)(-) > —c|| - || can be rephrased more explicitly as follows: for
allm>1,x1,.... 00 €PB, (t1,...,tm) €An:={(t1,....tm) ERY 111+ +1, =1},

2 fixil| .

(4.62)

D (f(x+x) +ellxl) > f(x) —c
i=1

Proof. Let X* € d°f(x) and let p > 0 be as in the definition of this set. Then for
m>1and (t1,...,tm) € An, X1,...,Xm € pB we have

FE+x)+elxl > f@) + & x), ieN:={l,...,m}.

I

Multiplying both sides by #; and summing, we obtain (4.62) by taking ¢ := ||x
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Conversely, suppose co(f%P)(-) > —c|| - || for some p > 0, ¢ > 0. Then, since
—c]|0]] < co(f&P)(0) < f&P(0) = 0, we have co(f*)(0) =0 and co(f&P)(x) >
co(f4P)(0) — c|x||. Thus, Lemma 3.29 yields some ¥* € d(co(f**))(0) NcBx+, so
that for x € pB, we get

JEP(x) 2 co(f*P)(x) = co(fP)(0) + (X*,x) = (X",x).

That ensures that ¥* € 9° f(X). O

Now let us characterize the nonemptiness of the set dr f(X). In the sequel, (g,) is a
fixed sequence of (0,1) with limit 0.

Lemma 4.107. Given ¢ € R, (&,) — 0., and an arbitrary function f : X — R
finite at X, one has dp f(X) NcBx+ # @ if and only if there exists a sequence (p,) of
positive numbers such that, for fP given as in the preceding lemma, one has

VxeX, (co(ir’;ffg”’p”))(x) > —c||x]|. (4.63)

It can be added that ¥* € dp f(X) NcBy+ if and only if there exists a sequence (p,,)
of positive numbers such that co(inf,, f&*7)(0) = 0 and X* € drco(inf, f&P)(0).
However, our aim is to obtain a condition that involves just an estimate about this
function and no element of the dual space.

Proof. LetX* € dr f(X) NcBx=. Let p, > 0 be such that
VrEpuB,  [(F42)— f(F)— (Fx) = el

and let g :=co(inf, féPr). Then for all n and x € X, one has f“r(x) > (x*,x),
hence g(x) > (x*,x), in particular g(0) > 0, and in fact, g(0) = 0, since f&(0) =
0 for all n. Thus ¥* € dg(0). Using Lemma 3.29, we get (4.63). Conversely, this
last relation ensures that dg(0) N cBx+ # &. Now, for every X* € dg(0) we have
X" € dp f(X), since for all n € N and all x € X we have

foPr(x) = g(x) 2 (%),

hence ¥* € 9% f(X) (since f%P»(0) = 0). O

Applying Lemmas 3.29 and 1.54 to h,, := f P, we see that relation (4.63) holds if
and only if for all p € N\ {0} one has

VxeX, co(hy,...,hp)(x) > —cl|x]|. (4.64)

4.6.2 Separable Reduction

The following striking result is of independent interest, but it is not the final aim of
this section.
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Theorem 4.108. Let f : X — R.. be a lower semicontinuous function on a Banach
space X and let ¢ € R. Then for every separable subspace Wy of X there exists a
separable subspace W containing Wy such that for allw € W the relation dp f(w) N
¢Bx+ # @ holds if and only if dr (f |w)(w) NcBw+ # & holds.

Proof. Without loss of generality, changing f into ¢! f if necessary, we assume
¢ < 1. Since f is lower semicontinuous, for all x € X, we have

N(x) :=sup{r € Ry :inf f(B(x,r)) > —oo} > 0.

Given a sequence (g,) — 04 in (0,1), we construct an increasing sequence (W)
of separable subspaces of X and a sequence (A )i, where A is a dense countable
subset of W;.. We start with W and take for Ay any dense countable subset of Wj.

Assume we have constructed (W,,,A,) forn =0,... k. Given a € X, k,m,p €
N\{0},¢>0,p:=(p1,...,pp) € (0,n(a)/2)P, j € Jmp = (N,)™ (so that j includes
the data of m and p), t := (t,...,tn) € Ap, let

m
X(avpajqut) = {X— (xlv--- ,Xm) € Hzpj(t)Ba ||tlxl + "'+tmxm|| < q} (4.65)
i=1

and let (wy,...,wy) :=w(a,p,j,k,q,t) € X(a,p,j,q,t) be such that

1
inf {Zt, fla+x) + & |x,|} Zt, fla+w;) + € ||w,||)—%

xeX(a,p,j,q.t)

Let W1 be the closed linear space generated by Wy and the vectors w;(a, p, j, k,q,t)
forae Ay, m,p e N\ {0}, i €Ny, j € Jpp i =1{j: Ny =N, } =(N,)", g€ Q,
pe(0,n(a)/2)"NQ™, t := (t1,...,tm) € Ay NQ™. Clearly W, is separable, so
that we can take a dense countable subset Ay, of Wy, containing Ay.

Let W := cl(Ug Wi). Letw € W be such that dr (f |w ) (w) NcBw+ # &. Thus, there
exists some decreasing sequence (p,), of rational numbers in (0,1(w)/4)N (0, 1)
such that, setting

~

=

is

=
I

fwtv) = fw) + &Vl +13p,8(v),  veEW,
faw(x) = fw+2) = fW) + & x| +1p,8(x),  x€X,

where 1,5 denotes the indicator function of the ball B := rBx, one has
Vp>1,WeWw, o (Al s fo) (V) = —c|v]). (4.66)
Let us prove that for all & > 0, we have

Vp>1,VxeX, CO(fiws-- s fpw)(x) > —c|lx|| — o (4.67)
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This relation means that for all m, p € N\ {0}, all j:N,, = N, allt := (r1,...,t,) €

A, and all xq,...,x,, € X with x :=t1x; + - - - 4+ t,,X,, We have
tlfj(l),w(xl) +-F tmfj(m),w(xm) > —CH)CH — . (4-68)
We may suppose that #q,...,, are rational numbers. It also suffices to consider

the case in which x; € p;(;)B for all i € N,,. Let g be a rational number satisfying
x|l < g < ||x]| 4+ /5, and let B € (0,0/5) be such that § < n(w)/2, |lx]|+ B <
q. We take k > B! with d(w,W;) < min(B,p,) and a € A; such that |ja —w| <
min(f3,p,). Then B(a,n(w)/2) C B(w,n(w)), so that n(a) > n(w)/2. Fori € N,
setting v; :=x; +w —a, we note that we have ||v; — xi[| < B, [[vill <pjq)+pp <2pj3),
pi <n(w)/4<n(a)/2and

Erve - v | < i1+ - o ||+ max [[vi = xil| < [|x[| + B < g.

Thus v; € X(a,p, j,q,t). The relation w+ x; = a + v; and the triangular inequality
justify the first of the following string of inequalities, while the second one stems
from the definition of w; as an approximate minimizer on X (a, p, j,¢,t); the triangle
inequality and the relations a + w; = w+ z;, for z; := a — w+ w;, explain the next
ones:

Ms

ti(f(a+vi) + &gy [Ivill — &) lxi —vill)

i (v t32) + 5 ] >

—_

Y
.Ms

—_

t(f(a+wi) + & [will) = 1/k— B

Y
.Ms

Il
—

a(f(w+z) + &) (la—wHwil = fla—wl)) - 2B

Y
.Ms

Il
—

(f(w+2zi) + & llzill) =3B

Setting z := 32 fizi, with z; := a —w+w; € WN3p;(; B, from (4.66), we get

ztzfj ) (Xi) Z (f(W+Zi)—f(W)+€j(i)HZiH)—313

HMi

—Zfz Fitiyw(z) =3B = =cllz| =3B

Now, since z; —w; =a—wand t; +--- +t,, = 1, by (4.65) we have the estimate

lzll < [ltiwi+ -+ twwml| + la—w| < g+ B < ||x]| + ¢ /5+ B.
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Since ¢ < 1 and < /5, relation (4.68) is established. Then for all o > 0, (4.67)
holds, so that (4.67) holds with oo = 0 and (4.63) is satisfied. a

4.6.3 Application to Fuzzy Calculus

Using the previous results, one can prove the following crucial separable reduction
property for sums.

Theorem 4.109. Let Wy be a separable subspace of a Banach space X, let f €
F(X), and let g : X — R be convex continuous. Then there exists a separable
subspace W of X containing Wy such that for all w,z € W the relation (dr f(w) +
0g(z)) NcBx+ # @ holds if and only if the relation (I (f |w)(w)+3d(g|w)(z)) N
cBw+ # @ holds.

Proof. Let us first consider the case that g is a continuous linear form. Then since
Or(f +g)(w) = drf(w) + g, with a similar relation for the restrictions to W, the
result follows from Theorem 4.108 applied to f + g. An examination of its proof
shows that the construction of W for f remains valid for f + g, since the same
sequence (p,,) can be used for f + g and for all n, p € N\ {0} and w e W,

(f+g)flv,w=frf,vw+g|vv7 (f+g)n,vv:fn,vv+ga
Co(fl,W+g7"'7fp7W+g):Co(fl,W7-"7fp7w)+g7

and a similar relation with co(f}", +g|w,..., /), +&lw)-

Now let us consider the general case. Given f and a separable subspace W of X,
let W be a separable subspace containing Wy associated with f as in Theorem 4.108.
Letw,z € W and letwjy, € dp (f|w)(w), 2}y € d(g|w)(z) be such that ||w, +zj; || <c.
Using Lemma 4.105, we can find some z* € dg(z) such that z* |y = zj;;. Then by
the preceding special case, we can find w* € dr f(w) such that |[w* +z*|| <, ie.,
w* 42" € (dp f(w) +2*)NeBx+ C (dr f(w) + dg(z)) NeBx+. 0

Recall that X is said to be a dp-subdifferentiability space if for every element f
of the set .7 (X) of proper lower semicontinuous functions on X the set G of points
(w, f(w)) such that dr f(w) is nonempty is dense in the graph of f. We say that X
is a reliable space for d if whenever f € % (X), g : X — R is a convex continuous
function, and f + g attains its minimum on X at X € X, then for every € > 0 there
exist w,z € B(x, €) with | f(w) — f(X)| < € such that the relation (Jr f(w)+ dg(z)) N
€Bx+ # @ holds. The space X is said to be trustworthy for dg if the same holds when
g is a Lipschitzian function and dg(z) is replaced with drg(z).

Theorem 4.110. For a Banach space X, the following properties are equivalent:

(a) X is an Asplund space
(b) Foralln € N\ {0}, X" is a reliable space for the Fréchet subdifferential dp
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(c) Foralln € N\ {0}, X" is trustworthy for the Fréchet subdifferential o
(d) X is a trustworthy space for the Fréchet subdifferential o
(e) X is a subdifferentiability space for the Fréchet subdifferential dp

Proof. (a)=-(b) Since X" is an Asplund space by Corollary 3.101, it suffices to
show that X is reliable whenever X is Asplund. Let € > 0, f € .%(X), and a convex
continuous function g : X — R be given such that f + g attains its minimum on
X atXx € X. Let Wp := Rx and let W be a separable subspace of X containing Wy
associated to f as in Theorem 4.109. Since X is Asplund, the separable subspace
W has a separable dual, hence a Fréchet smooth bump function. Then the fuzzy
minimization rule shows that there exist w,z € B(X, €) "W such that | f(w) — f(X)| <
€ and (dr(f |w)(w)+ (g |w)(z)) NeBw+ # . Then we conclude from Theorem
4.109 that (dp f(w) +dg(z)) NeBx+ # @.
In the next implications we may also suppose n = 1.

(b)=(c) Let f € #(X), let g : X — R be Lipschitzian with rate k such that f + g
attains its minimum on X at X € X. Then for all (x,y) € X2 one has

) +80) +klx—yll = f(x) + 8(x) = f(X) + &)

Since X? is reliable, since & given by h(x,y) := k||x — y|| is convex continuous, and
since (x,y) — f(x)+g(y) +h(x,y) attains its minimum at (X, ), for all € > 0 one can
findu € B(0,€), w,z € B(X, €, f), w* € dr f(w), Z" € drg(z), and u* € Bx+ such that
lw*,2*) + k(u*, —u*)|| < €. It follows that ||w* + z*|| < ||w* + ku*|| + ||z* — ku*|| <
¢ (if we endow X2 with the sup norm and its dual with the sum norm).

(c)=(d) is obvious.

(d)=-(e) The proof was given in Ekeland-Lebourg’s theorem (Theorem 4.65).
(e)=>(a) Let W be an open convex subset of X and let f : W — R be a continuous
convex function and let x € W, € > 0 be given. Let g := —f. Since X is a
subdifferentiability space for dr, there exists some x € B(X, &) "W such that drg(x)
is nonempty. Then f is Fréchet differentiable at x. Thus f is densely Fréchet
differentiable and X is an Asplund space. a

Corollary 4.111. The fuzzy calculus rules given for dg are valid in Asplund spaces.

4.7 Applications

In this section we just exhibit some direct and short applications.

4.7.1 Subdifferentials of Value Functions

Optimal value functions of optimization problems depending on parameters are of
excruciating importance in analysis and optimization. Distance functions are of this
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type, and many results of game theory and optimal control theory rely on their study.
Moreover, they play an important role in bilevel programming and in the study of
Hamilton—Jacobi equations. Value functions are seldom differentiable. Providing
conditions ensuring differentiability or subdifferentiability is not an easy task.
They are of two types: marginal functions and performance functions respectively
obtained as

m(w) :=supF(w,x), p(w):=inf F(w,x), wewW.
xex xeX

Since subdifferentials are one-sided concepts, these two types should be distin-
guished. Hereinafter, the decision variable x belongs to an arbitrary set X, the
parameter variable w belongs to a normed space W, and F : W x X — R is a function
called the perturbation function. We consider a nominal point u € W at which p is
supposed to be finite. We do not assume attainment, a hypothesis that would much
simplify the question, but is not always satisfied.

Changing F into —F, one deduces subdifferentiability results for m from
superdifferentiability results about p. Thus, in order to avoid ambiguities about the
sets of solutions or approximate solutions, we limit our study to the performance
function p. For oo > 0, w € W, we set

Sw,o) :={x€X : F(wx) <infF({w} xX)+o}. (4.69)

Here we extend the addition to R x (0, +0) by setting r+ o := —1/ ¢ for r = —oo,
r+ o := oo for r = +eo, so that S(w, o) is always nonempty. Moreover, the set
S(w) of minimizers of F,, satisfies S(w) = Ng=0S(W, @).

In order to get some results, we impose a control of the behavior of F on some
approximate solution set. In fact, instead of controlling the functions Fy := F(-,x)
for all x € S(w, &), it would suffice to control these functions for x in a sufficiently
representative subset of S(w, o). In order to give a precise meaning to this idea, we
introduce the minimizing grill of F,, as the family

My ={M CX :infF({w}xM)=pw)} ={MCX:Yoa>0MNSw,a)# o}

Of course, every member of the family 7, := {S(w, o) : o0 > 0} of approximate
solution sets of F,, is a member of ., but .#,, is a much larger family, so that
several assumptions below are less stringent than assumptions formulated in terms
of the family .«,. Both families play a natural role in minimization problems: M
belongs to .#,, iff M contains a minimizing sequence of F;,. In making assumptions
about a family (Fy)xem, one is willing to take M € .#,, as small as possible. The best
case occurs when the set S(u) of minimizers of F, is nonempty: then one can take
for M a singleton {x}, where x € S(u), or any subset of S(«). However, we endeavor
to avoid the assumption that S(u) is nonempty.
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4.7.1.1 Subdifferentiability of Marginal Functions

As mentioned above, we reduce the subdifferentiability of the marginal function m
to the superdifferentiability of p (changing F into —F). Recall that the (Fréchet)
superdifferential at u of a function 4 : W — R finite at u is the set

Iph(u) := —p (—h)(u).

Obviously, 4 is (Fréchet) differentiable at u iff it is subdifferentiable and superdif-
ferentiable at u. Then one has dph(u) = drh(u) = {Dh(u)}.

Superdifferentiability of p is easy to obtain. When the set S(u) of minimizers
of F, := F(u,-) is nonempty and when for some x € S(u) the function F(-,x) is
superdifferentiable at u, the performance function is clearly superdifferentiable at u.
The following proposition does not require such assumptions.

Proposition 4.112. The following condition on u* € W* ensures that u* € 5Fp(u):
(p™) for every € > 0 there exists & > 0 such that for all v € B(u,d), o > 0, there
are x € S(u, o) and w* € B(u*, €) satisfying

F(v,x) < F(u,x)+ W' v—u)+elv—ul. (4.70)

Proof. Given € > 0, let § > 0 be as in condition (p™). Then for every v € B(u, §) and
every a > 0, we pick x € S(u, o) and w* € B(u*, €) such that (4.70) is satisfied. Then
we deduce from (4.70) and from the inequalities p(v) < F(v,x), F (u,x) < p(u) + o,
W v —u) < (u*,v—u)+€||v—ul that

p(v) <pu)+o+ W ,v—u)+2e|v—ul| VveBu,d),

p(v) < plu)+ ", v—u)+2¢|v—u| VveBu,d),

since o > 0 is arbitrarily small, and we get that u* € 517(14). O

Given some fixed M € #,,, for o¢ > 0 we introduce the subset Dé of W* by
Dy =Dy ={w" eW": IxeSu,a)NM, w* € OrF(u)}.

Corollary 4.113. Suppose the following conditions bearing on some M € ), hold:

(a™) For all x € M the function F is superdifferentiable at u

(b™) limsup,,_,, Dy, is nonempty

(et) The family (Fy)xem is eventually equi-superdifferentiable at u in the following
sense: for every € > 0 there exist o,,8 > 0 such that for all x e MNS(u, o), w* €
O F(u) (4.70) holds

Then p is superdifferentiable at u and limsup,,_o, Dy C 5Fp(u).
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Condition (e™) is obviously satisfied when Fy is concave for each x € M. This
condition is a weakened form of the following assumption (which can be called
equi-superdifferentiability at u of the family (Fy)xepm):

(e’") For every € > 0 there exists § > 0 such that for all x € M, w* € 5FFx(u), (4.70)
holds.

Proof. Given € > 0, we take § > 0, oo > 0 as in condition (e*). Then we use
condition (b¥) to pick u* € limsup,_,o, Dy, so that there exist w* € B(u*,€),

x € MNS(u, a) satisfying w* € 5Fx(u) and (4.70); this entails condition (p*). O

Of course, usual differentiability and equi-differentiability can be substituted for
their one-sided counterparts used in the preceding corollary. These assumptions are
satisfied in the next example.

Example. Let W = X*, u = 0 and let ¢ : X — R., be an arbitrary function such
that infx ¢ is finite. Taking F (w,x) = @(x) — (w,x), so that the Fenchel transform
of ¢ is ¢* = —p, and observing that the family (F;).cx, being composed of
affine continuous functions, is equi-differentiable at 0, we get that d@*(0) =
—0drp(0) contains —co* (limsup, o, D), where D := {—x: ¢(x) <infy ¢ + o}
In particular, the set S of minimizers of ¢ satisfies —co*S C d¢*(0), a well-known
fact.

4.7.1.2 Subdifferentiability of Performance Functions

Simple examples show that F' may be smooth while p is not subdifferentiable. Such
a case occurs when W =R, X := [—1,1], and F (w,x) := wx, so that p(w) = — |w|.
Thus, we need assumptions about the behavior of F ensuring some stability.

Definition 4.114. The perturbation F is said to be compliant at u € W with respect
to some subset M of X if for every o > 0 there exist V € .4 "(u) and B > 0 such that

Yvev, Sw,B)NM C S(u, ox).

It is said that F' is docile at u with respect to some subset M of X if for every o0 > 0
there exists V € .4 (u) such that S(u, ) "M € 4, for all v € V, or in other words,

Yoo >0, 3V e AN (u), VWweV, VB >0, S, B)NS(u,00) "M # 2.

When one can take M = W, we just speak of compliant (resp. docile) perturbations.
Thus a compliant perturbation is docile. On the other hand, when the set S(u) of
minimizers of F, is nonempty, taking for M any subset of S(u), we get that F is
compliant with respect to M, but not necessarily docile with respect to M. Before
quoting a compliance criterion, let us present examples.
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Example. Let X be a closed nonempty subset of a normed space W and let F' be
given by F(w,x) := ||w—x||. For every u € W and every «, 3,p > 0 such that § +
2p < o one has S(v, ) C S(u, @) for all v € B(u,p). Thus F is compliant.

Example. More generally, if X is an arbitrary set and if for all x € X the function
F is Lipschitzian with rate c, then F is compliant at each point u of W, since for all
o,f3,p > 0such that  +2cp < o one has S(v, ) C S(u, @) for all v € B(u, p).

Proposition 4.115 ([352,820]). Suppose that for all x € X the function Fy is lower
semicontinuous and bounded below on W. Suppose there exist some A > p(u), ¢ €
Ry, andV € A (u) such that for all v € V, x € [F, < 4] there exists p > 0 for which

Yw € B(v,p), Fi(w) < FE(v)+c|lv—w]. 4.71)

Then F is compliant at u and p is Lipschitzian with rate ¢ on some U € N (u).

Another compliance criterion can be deduced from Proposition 4.115. It uses
the set dEF,(v) := —dE(—Fx)(v) of v € W* such that for all & > ¢ the function
w = Fe(w) — (v¥,w) — €'||w—v]|| attains a local maximum at v. Of course, in that

criterion, d¢Fy(v) can be replaced with dp Fy(v), or when the derivative exists, with
DF,(v).

Corollary 4.116. Suppose that for all x € X the function F is lower semicontinuous
and bounded below on W and there exist some € >0, A > p(u), ¢ >0, and V €
N (u) such that for all v € V and all x € [F, < A] the function F is finite at v and
IEF(v)NB(0,c) # @. Then F is compliant at u and p is Lipschitzian with rate c + €
around u.

Proof. ForallveV,xe€ [F, <A], picking v* € 5§Fx(v) NB(0,c), one can find p >0
such that

Yw e B(v,p), F(w) <EW)+ (" 5 w—v)+e|lw—v|<Ev)+(ct+e)|v—w|.

Thus Proposition 4.115 applies. O

The following assumptions ensuring subdifferentiability of p are rather stringent
and complex. In particular, assumption (b™) is not satisfied for W = X = R,
F(w,x) = |w—x|, u=0, although p = 0 is differentiable with derivative 0. However,
it is satisfied when F (w,x) = (w— x)*. Assumption (¢ ") is a weakened form of the
following equi-subdifferentiability condition (in which M is a subset of X):

(e;,) for every € > 0 there exists 6 > 0 such that for all x € M and w* € dpFy(u),
one has

Vv eBu,8), F(v)—Fu)—W,v—u)>—¢€|v—ul. (4.72)
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This condition is satisfied if M is a singleton {x} and F; is equi-subdifferentiable
at u or if for all x € M, the function F; is convex. When F is compliant (or just
docile) at u, a natural choice for M is M = S(u,0) for some 6 > 0.

A versatile subdifferentiability result follows.

Proposition 4.117. [f the following conditions hold for some u* € W*, M C X, then
p is subdifferentiable at u and u* € Jg p(u).

(a~) F is subdifferentiable at u for all x € M

(b~ ) Forall € > 0, a > 0 there exists some V € N (u) such that for all v € V one
can find some M, € M, contained in S(u, o) "M for which dpFy(u) NB(u*,€) # &
forallx e M,

(e~ ) The family (Fy)yem is eventually equi-subdifferentiable at u in the following
sense: for every € > 0 there exist o.,8 > 0 such that for all x € S(u,00) "M, w* €
OrFy(u), (4.72) holds

Proof. Given & > 0, condition (¢~) yields some ¢, 8 > 0 such that (4.72) holds
for all x € M, w* € drF,(u). Taking a smaller § if necessary, we may assume
V = B(u,6) in (b™). Then, for every v € V and every x € M,, we can find
w* € dpFy(u) NB(u*,€). Since M, C S(u,0) "M, using (4.72) and the inequality
[(u* —w* v—u)| < e|lv—ul, we get

Fo(v) > Fe(u) + ", v—u) —2¢||v —u]|.
Now, by definition of .#,, we have inf{Fy(v) : x € M, } = p(v). Therefore
p(v) 2 pla)+ (", v—u) — 2¢ |y —u].

Since € > 0 is arbitrary, this shows that u* € dr p(u). O

The following two consequences are simpler than the preceding statement. We use
the notion of limit inferior of a family (A(r));er of subsets of W* parameterized by a
set T as e(t) — 0, where e : T — P is a map with values in a topological space P and
0 € P:u* €liminf,)_A(t) iff d(u”,A(t)) — O as e(t) — 0. This notion is a variant
of the concept of limit inferior when T is a subset of a topological space P and 0 € P,
which correspond to the case that e is the canonical injection of T into P. Here we
take 7:=M, P =Ry, e(x) := F(u,x) — p(u), and A(x) := D (x) := dpFx(u). Then
e 1([0,8)) = S(u,B) "M and u* € liminf, oD~ (x) iff for every &€ > 0 there
exists some f3 > 0 such that for all x € S(u, B) N M one has dr F(u) NB(u*,€) # @.

Proposition 4.118. Suppose that for some M € #, the conditions (a”), (e~ ) of
Proposition 4.117 hold and

(d) The perturbation F is docile with respect to M
(d~) liminf,_,o D~ (x) is nonempty

Then p is subdifferentiable at u and liminf,()_,o D~ (x) C drp(u).
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Proof. Given u* € liminf,,) oD~ (x), let us prove that condition (b~) of Proposi-
tion 4.117 is satisfied. Given c, & > 0, condition (d™) yields some 8 € (0, 0) such
that for all x € S(u, ) N M there exists some w* € dpF.(u) N B(u*,€). Since F is
docile with respect to M, one can find V € .4 (u) such that S(u, ) M € .#, for all
ve V. Then M, := S(u, ) "M is the required set. O

In the next statement, we replace the docility condition by a compliance requirement
and we use the classical inner limit as 7 := (v, ) — (u,0) of the family (A(z));er
of subsets of W* given, for some fixed M C X and r € T := W X (0,4e0) C P:=
W x R4, by

A, B) =" eW": IxeSH,B)NM, v € drF(u)} =D (S(v,f)NM).

Thus, u* € liminf(, g)_,(,0)A(v, B) iff d(u*,A(v,B)) — Oas (v,) = (u,0)in T.
Since A(v, B) C A(v,7y) for B < 7, one has u* € liminf(, g)_,(,.0,)A(v, B) iff

Ve>036>0:VveBu,d), V>0, A(B)NB(',e)+2.

Proposition 4.119. Suppose that for some M C X the conditions (a~), (e”) of
Proposition 4.117 hold and

(c¢) The perturbation F is compliant with respect to M
(c™) The set A :=liminf(, g) ., 0,)A(v,B) is nonempty

Then p is subdifferentiable at u and A C dr p(u).

Proof. Given u* € A, let us prove that condition (b~) of Proposition 4.117 is
satisfied. Given a,& > 0, the compliance assumption yields some 3 > 0 and
V € A (u) such that S(v, ) "M C S(u, ) for all v € V. By condition (¢™), for some
y> 0 and some § > 0 with V' := B(u,8) C V, forall v € V' and all B’ € (0,7) we
can findx € S(v, ') NM and w* € dpF,(u) NB(u*, €). Taking a sequence (f3,) — 0
in (0,inf(B,7)), we get some x, € S(v,8,) "M and w}, € dpF,, (u) N B(u*,€). Let
M, :={x, : n € N}. Then M, € .#, is the required set for condition (b ™). O

Example. Let X be a nonempty closed subset of a normed space W and let
u € W\ X be such that u has a best approximation z € X and such that (x,) — z
whenever x, € X and (d(u,x,)) — dx (u) := infyex d(u,x). Then if the norm of W is
Fréchet differentiable at z — u, with derivative j(z — u), one has j(z —u) € drpdx (u).
In fact, when the norm is Fréchet differentiable at z — u, by Proposition 3.32, the
multifunction 0 ||-|| is lower semicontinuous at z — u. Thus, for F(w,x) := ||w —x||,
M :=W, our well-posedness assumption ensures that j(z —u) € lim inf,(y) 0D~ ().
Since F is convex continuous, assumptions (a~) and (e~) are satisfied with e(x) :=
|lx — u|| — dx(u). Moreover, F is compliant by Proposition 4.115. Let us note that
since the conditions of Corollary 4.113 are satisfied with M = {z}, we get that

Jjz—u) € drdx(u)N Opdy (u), so that dx is Fréchet differentiable at u. O
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4.7.1.3 Differentiability Properties

Gathering the previous results, we obtain a differentiability property.

Proposition 4.120. Suppose the following conditions hold for some u* € W* and
Me My:

(a) Forall x € M, F, is differentiable at u and DF, — u* as F (u,x) —y p(u)

(d) F is docile at u with respect to M

(e) The family (Fy)xem is eventually equi-differentiable at u in the sense that for all
€ > 0 there exist ¢ > 0, & > 0 such that

Vv e B(u,8),x€Su,0)NM, |F(v,x)—F(u,x) — (DF(u),v—u)| < el|lv—ull.
(4.73)
Then p is Fréchet differentiable at u and Dp(u) = u*.

Proof. We note that for Dy, := {DF,(u) : x € S(a,u) "M}, (a) implies that {u*} =
limg_,0, Dy in the sense that for every € > 0 there exists > 0 such that D, C
B(u*,€) for all o € (0,8). Thus, the result follows from Corollary 4.113 and
Proposition 4.118. a

Using the methods of the previous proofs, one can obtain a circa-differentiability
result.

Proposition 4.121 ([821]). Suppose the following conditions hold for M := S(u, 0)
with 8 > 0 and some u* € W*:

(a) Forall x € M, F is differentiable at u and DF,(u) — u* as e(x) — 0

(d) F is docile at u with respect to M := S(u, 0)

(ec) The family (Fy)yem is eventually equi-circa-differentiable at u: for every € >0
there exist o > 0, & > 0 such that for all x € S(u, o) one has

|Fx(v) — Fx(w) — (DF(u),v —w)| < g|lv—w|  VYv,we B(u,9).

Then p is circa-differentiable at u and Dp(u) = u*.

Let us note that assumption (ec) is a weakened form of the assumption that the
family (Fy)xem 18 equi-circa-differentiable at u in the following sense: for every
€ > 0 there exists 6 > 0 such that for every x € M one has

|Fe(v) — Fe(w) — (DF(u),v—w)| < el|lv—w|  Vv,we€ B(u,9).

Now let us give a criterion for equi-circa-differentiability.

Lemma 4.122. The following assumptions ensure that condition (ec) holds:

(a') There exists 0 > 0 such that for all x € S(u, 0), Fy is differentiable on B(u,0)
(er) Forevery € > 0 there exist o, 8 > 0 such that for v € B(u, ), x € S(u, ), one
has ||DF,(v) — DF,(u)|| < €
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Proof. Given € > 0, we take o/, 8 > 0 as in (e[-). Then for x € S(u, o) one has
Vv,w € B(u,6), |Fx(v) = Fx(w) = (DF(u),v —w)| < € [lv —w],

by the mean value theorem applied to the functions w — Fy(w) — DFy(u)(w). O

Taking into account Corollary 4.116 and Lemma 4.122, we get the following
corollary.

Corollary 4.123. Suppose that for all x € X the function Fy is lower semicontinuous
and bounded below on W and that for some 6 > 0 the following condition holds
along with (d'), (e’c):

(f) There existc € Ry, V € N (u) such that for all v € V and all x € [F, < p(u)+ 6]
the function Fy is differentiable at v with | DF,(v)|| < c.

Then F is compliant at u and p is circa-differentiable at u.

Exercises

1. Suppose X is a topological space, F is lower semicontinuous at (u,x), and F, is
continuous at x for all x € Xy, where Xj is a subset of X such that for all sequences
(&2) = 04, (up) — uin W, (x,) in X with x,, € S(u,,€,) for each n, the sequence
(xn) has a cluster point in Xy. Show that if p is upper semicontinuous at u, then F is
compliant at u. (See [820].)

2. Using a continuation method, prove Proposition 4.115.
3. Show that liminf, ) o D™ (x) C lim inf(y, ) (u,0, ) Av,e When F is docile.

4. Prove Proposition 4.121.

4.7.2 Application to Regularization

There are various ways of approximating a nonsmooth function by a more regular
one. In finite dimensions, regularization by means of integral convolution with
mollifier functions is especially useful for the study of partial differential operators.
For optimization problems, infimal regularization is better adapted: it is valid even
if the underlying space X is an infinite-dimensional Banach space, for it preserves
infimal values and minimizers. Its general form is as follows: given a function
f:X — R.. and a “ regularization kernel” K; : X> — R, one sets

fi(w) :=inf{f(x) + K (w,x) : x € X}, weW: =X, t>0.
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The regularized function f; thus appears as a special performance function. A simple
form of the regularization kernel consists in taking K; (w,x) = tk(w — x) for t > 0,
w,x € X with k: X — R,. In particular, the classical example of the Baire (or
Pasch—Hausdorff) regularization is obtained with k(x) = ||x||. Another form of
the regularization kernel consists in taking K;(w,x) = tj(t~'(w —x)) for ¢ > 0,
w,x € X, where j : X — R, is a given function. The most popular processes are the
Moreau regularization obtained with j(-) = (1/2)]| - ||*> (or k(-) = (1/2)]| -||*) and
the rolling ball regularization obtained with j(x) = 1 — /1 — ||x||? for ||x|| € [-1,1],
+o0 otherwise. When f; := £ j, with j,(x) :=¢j(t"'x), one has f* = f* +¢j* and
if f/* = f; one gets smoothness properties of f; from rotundity properties of f;*.
Moreover, the study of the convergence of f;* as r — 0 is simple, so that continuity
properties of the Fenchel transform may yield convergence results, at least under
convexity assumptions. But we do not consider convergence issues. We rather deal
with the case that 7 is fixed, so that the two different forms described above coincide.

Here our purpose is to show that the differentiability results of the preceding
section can be applied to the case K; (w,x) = tk(w—x), where k is a function k : X —
R, with the following properties:

(rl) kis coercive, Lipschitzian on bounded subsets, and k(0) = 0;
(r2) For every c € (0,1), r > 0 there exists some m € R such that

k(w—x)>ck(x)—m VYwe B(0,r), Vx € X;

(r3) k is continuously differentiable on X;
(r4) k is uniformly convex on bounded subsets: for every r > 0 there exists some
nondecreasing function ¥ : [0,2r] — R such that y(¢) > 0 for# > 0 and

%k(x) + %k(x’) —k (%x—l— %x’) >y(|x=x)) Vx,x €B0,r).
These conditions are satisfied for k(-) := s~ ||-||* with s > 1 when (X, |-||) is
uniformly convex and uniformly smooth, in particular when X is a Hilbert space
(see [984] for instance).
Since here the parameter ¢ € (0,4-0) is considered fixed, we do not mention it
in the expression for F, so that the relationships with what precedes are clearer;
however, the value function p := f [tk is now denoted by f;.

Theorem 4.124. Assume conditions (r1)—(r4). Suppose f : X — R, has a nonempty
domain and is such that for some s € R and all u € X the function f(-)+ sk(u—-) is
convex and bounded below. Then, fort > s, the regularized function f; of f given by

filw) = igF(w,x), where F(w,x) := f(x) +tk(w—x), weX,

is of class C' on W =X and f, < f.
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Proof. Clearly, assumption (r1) ensures that f; < f. Taking xo € f~'(R), for all
w € W we have f;(w) < f(xo) +tk(w—xp) < +eo. Let r > 0 and w € B(0, r). Taking
¢ € (0,1) such that ¢t > s and taking m associated with ¢ and r as in assumption
(r2), forx € X and b := inf (f(-) + sk(-)) we get the estimate

F(w,x) > b — sk(x) + ctk(x) —mt > b — mt.
Then f; (w) > b — mt and for every 8 € (0, 1], x € S(w, B), we have
(ct —$)k(x)+b—mt < F(w,x) < fy(w)+ B < f(xo) +tk(w—x0) + 1,

so that the coercivity of k entails the existence of some r; > 0 such that S(w,3) C
S(w,1) C M := B(0,r;) for all w € B(0,r). The first of the preceding inequalities
also shows that setting 6 := 1, A := p(u) + 6, increasing r; if necessary, we
may suppose that [F, < A] C B(0,r;) for all w € B(0,r). Now for all x € X,
F, is differentiable and DF,(w) = Dk(w — x), which is bounded for w € B(0,r),
x € [F,, < A], since k is Lipschitzian on the bounded set B(0,r + ry): condition (f) of
Corollary 4.123 is satisfied. Let us show that DFy(w) converges as w — u, e¢(x) — 0,
where e(x) := f(x) +tk(w —x) — f;(x).

Foru € X, o0 > 0, and x,x’ € S(u, @) we have, with X’ := %x—i— %x’,

(F3) th{u =)+ 3 () + k(=) < 3 (i) + @)+ 5 () +0)

< SO+ tk(u—x") + o

N =

hence, using (r4) and the convexity of f + sk(u — -), we have
/ 1 1 / "
(t—s)y(||x =) <(r—s) Ek(u—x) + Ek(u—x ) —k(u—x")

< S +o— §<f<x> + () + sk —x") = Sk(u—x) ~ Sku—) <

It follows that the diameter of S(u, o) tends to 0 as o — 0. Since X is
complete, the family (S(u, @))y~0 converges to some point J¢(u) in X. Then when

w — u, o — 0, we have sup{||(w—x) — (u—J¢(u))|| : x € S(u,t)} — 0. Since
DF;(w) = —tDk(x —w) is continuous in (w,x) at (u,J¢(u)), we get that {DF(w) :
x € S(u,0)} — u* := —tDk(Jp(u) —u) as w — u, oc — 04, and condition (a’) and

(e/c) of Corollary 4.122 are satisfied. The fact that f; is of class C' ensues from its
circa-differentiability at every point u of W. O
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Exercises

1. Let f: X = R., t > 0 and let f; be the Baire regularized function of f. Show
that either f; is the greatest r-Lipschitzian function g < f or there is no such function
and then f; = —oo¥,

2. Suppose k satisfies tk(x) + (1 — £)k(x') — k(tx+ (1 —1)x') > 1(1 — 1)k(x —x') for
all 7 € [0,1], x,x’ € X. Show that for r,s > 0 and every function f, one has (f;)s >
fr+s. Check that for k := (1/2)]|-||* in a Hilbert space this inequality is an equality.

3. Let (X, |-||) be a Hilbert space and let k := (1/2)]]-]|*.

(a) Show that for a closed proper convex function f the infimum in the definition of
fi(w) is attained at a unique point P;(w).

(b) Prove that f; is differentiable at every point w € X and Vfi(w) = (1/1)

(w—F(w)).
(¢) Deduce that the distance function d¢ to a closed convex subset C of X is
differentiable and Vd2 = 2(Ix — Pc), where Pc is the projection from X to C.

4.7.3 Mathematical Programming Problems and Sensitivity

Let us consider the mathematical programming problem
()  minimize f(x) subject to g(x) € C,

where f: X — R.. is finite at ¥ € g ' (C) and g : X — Z is H-differentiable at X, with
X and Z Banach spaces, C a closed convex subset of Z. Let Y := Z*. A first-order
necessary optimality condition for an element ¥ € g~!(C) can be expressed using
the Lagrangian { given by

Zy(x) = E(xvy) :f(x) + <y,g(x)>, (xvy) €EX XY,
and the set
K(x):={y € N(C,g(X)) : 0 € dply(x) = dpf(X) +yog'(X)}

of Karush—Kuhn—Tucker multipliers at X. Such a condition is usually obtained under
a technical assumption called a constraint qualification condition. When C is a
singleton, one usually requires that g'(X)(X) = Z; when C is a closed convex cone,
a classical qualification condition is the Robinson condition

g®X)-R(C—g(¥) =2,

which is equivalent to the Mangasarian—Fromovitz condition when Z =R"™, C = R™
(see Exercise 2 below).
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In general, the performance (or value) function p associated to (Z?) by

p(z) :==inf{f(x): g(x)+z€ C}

is not differentiable. When p is differentiable, its derivative is a multiplier; more
generally, as in the convex case, the following statement points out a link between
the subdifferential of p and multipliers that is illuminating, since it shows that
multipliers are not artificial tools but are naturally associated with the problem.

Proposition 4.125 ([809]). For every solution X of (), one has dpp(0) C K(X).

Proof. Lety € dpp(0),7:=g(X) € C. Let us set F(z) := g~ '(C—z) for z € Z. Let
w:=r(z—7),withze€ C,r>0.Fort € [0,1/r],one hasz+tw=rtz+ (1 —rt)z€ C,
g(X) = (z+1tw) —tw, hence X € F(tw). Thus p(tw) < f(x) = p(0). It follows that
(,w) < liminf, o, (1/7) (p(tw)) — p(0)) < 0. Since z € C and r > 0 are arbitrary,
we gety € (R (C—2))° =N(C,2).

Given u,v € X, setting wy, := ¢! (g(X) — g(X+1v)), w := —g/(¥)u and noting
that (w;,) — was (t,v) = (04, u) and g(X+1v) +tw;, = g(X) € C, hence X+1v €
F(twey), we get p(twr,) < f(X+1v). It follows from the definition of dpp(0) that
1
7

(5. —g ®u) = (F,w) < liminf —(p(twr,) — p(0))

(2,v)—=(04.,u)

< liminf l(f()‘c—l—tv)— f®) = fPx,u),

(t,v)—(04,u) T

or —yog'(x) € dpf(X). Thus 0 € dply(X) and y € K(X). O

Corollary 4.126. If p is differentiable at 0, then for every solution X to (Z?), one
has p'(0) € K(x).

One can get an optimality condition in the case that the constraint set is defined
by inequalities without assuming differentiability of the map g. For that purpose,
we need to express the normal cone to a sublevel set. We start with a special convex
case.

Lemma 4.127. Let7* € Z* with ||7*|| = 1, y € (0, 1) and let C be the Bishop—Phelps
cone given by C := {z € Z: (z,2) > 7||z|}. Then the polar cone of C is C° =
R, (yBz+ —7*), and for z € C one has N(C,z) = {y € C°: (y,z) = 0}.

Proof. The last relation is valid for every convex cone and is obtained by using
the inclusion C + z C C, implying that N(C,z) C N(C,0) = C° and by observing
that for y € N(C,z) one has (y,2z—2z) <0, (y,0 —z) <0, hence N(C,z) C {y €
€% : (y,z) = 0}, while the reverse inclusion is obvious. To justify the expression
of C” when C is the above Bishop—Phelps cone, one first observes that for all y €
YBz+ —7* and for all r € Ry, z € C one has (y,2) < y||z|]| + (—7*,z) < 0, hence
ry € C°. Conversely, since Q := R, (yBz- —7*) is easily seen to be weak* closed, if
y € Z*\R; (yBz+ —7"), the Hahn—Banach theorem yields some u € X with [ju|| =1
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such that (y,u) > r(u* —7*,u) forall r € Ry, u* € yBz«. Since r is arbitrarily large,
it follows that (u* —7*,u) < 0 for all u* € yBz+, and hence (Z*,u) > y||u|| or u € C.
Since (y,u) > 0, one has y ¢ C°. O

Setting g(z) := 7||z|| — (z*,z), so that C = g~ !(R_), the formula for N(C,z) is a
special case of a general relation about the normal cone to the sublevel set

Se(x) :={we X :g(w) <g(x)}.

Lemma 4.128. Let g € 7 (X). For x € domg one has Ry dpg(x) C Np(Sg(x),x),
R drg(x) C Nr(Sg(x),%).

Proof. Givenx* € dpg(x) and v € T(S,(x),x), taking sequences (t,) — 0., (v,) =V
such that x +1,v, € Sg(x), we have x* € Np(S,(x),x), since

(x*,vy < liminfl(g(x—i-tnvn) —g(x)) <o.

n n

If x* € drg(x), given € > 0 we can find § > 0 such that for w € S,(x) NB(x,d) we
have (x*,w—x) < g(w) —g(x)+¢e|w—x| < e|jw—ux], so that x* € Np(Sg(x),x).
O

In general, the inclusion R;dpg(x) C N(Sg(x),x) is strict, as shown by the
example of g : R — R given by g(x) := min(x,2x), since dpg(0) = &, whereas
N(S.(0),0) =R,

A reverse inclusion can be given in the convex case under a so-called qualifica-
tion condition. In the nonconvex case, one may use a fuzzy inclusion.

Theorem 4.129 (Normal cone to a sublevel set). Let g be a lower semicontinuous
Sfunction on an F-smooth Banach space X and let X € S := {x € X : g(x) < 0},
X* € Np(S,X). Suppose liminf,_,zd(0,drg(x)) > 0. Then for every € > 0, there exist
x € B(x,¢e,g8), x* € drg(x), and r > 0 such that |x* — rx*|| < €.

Proof. Without loss of generality, we may suppose X = 0 and g(x) = 0, replacing
g by g given by g'(x) := g(x + %) — g(%), so that §' := (¢/)"'(R_) C S —X and
observing that Np(S,X) C Nr(S5',0). In view of the density of {(x,g(x)) :x €
domdrg} in the graph of g, the case ¥* = 0 is obvious. Thus, we may suppose
|Ix*|| = 1. Let ¢ < liminf, ,5d(0,drg(x)), c > 0. Given € € (0,1), & € (0,&/2), let
p €(0,€), p < c/2besuch that 2a: +2pc~! (2 + 1) < € and such that g is bounded
below on B := pBx, d(0,drg(x)) > ¢ for x € B and

Vx e SN (B\{0}), (x*,x) < ot||x]| - (4.74)
Let gg := g+ 1p, and let C and C’ be the Bishop-Phelps cones

C:={xeX: & x)>2a|x]|}, C:={xeX:&x)>alx|}
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In order to prove that X is a robust minimizer of gz on C, let us first show that

vrex\c, de(x) > —2

. 4.7
> |l (475)

Given x € X\ C, let u € B(0,0c(2cc + 1)1 ||x]]), i-e., ||u]| < o||x|| — 20t ||u||. Then
since (X*,x) < a ||x||, we have

& x+u) < ol + F flu]

< 20t|x[| = 20¢[|ul| <20t [lx +ull,

hence x+u € X \ C, so that B(x, o(2a + 1)~ !||x||) € X \ C and (4.75) holds.

Now, given § > 0 and x € B\ {0} satisfying dc(x) < &, we have either x € C/,
hence x ¢ S (since SN (B\ {0}) NC' = @) and gg(x) >0, orx € X \ C’ and ||x|| <
o '(2a+ 1)de(x) < o' (2004 1)8. Both cases allow us to conclude that

inf{gp(x) : x € X, dc(x) < 8} > inf{gp(x) : x € o ' (200 + 1)8Bx}.

Since gp is lower semicontinuous at 0, the right-hand side converges to gg(0) =
0 as 6 — 0. Thus X is a robust minimizer of gg on C.

Corollary 4.64 yields some x € B(X,p), y € C, y* € N(C,y), x* € dpgp(x) such
that ||x* +y*|| < p. Then x* € drpg(x), since x € B(X, p) = intB. Then Lemma 4.127
yields s € Ry and u* € 20By+ such that y* = s(u* —x*). It follows that

c <[l < [+ I+ =57l < p+s2a+1),

hence s(20t+1) >c—p >c/2and r:=s"" <2c¢71(2a +1). Since ||x* +y*| < p,
we get

% — rx*|| < |&* 4 ry*|| +rp = |u*|| +rp <200+ rp <200+ 2pc Qe+ 1) <e.
O

Let us note a consequence pertaining to the asymptotic subdifferential.

Corollary 4.130. Let f be a lower semicontinuous function on an F-smooth
Banach space X and let X € domf, X* € d7 f(X). Then for every € > 0, there exist
x€B(x,e,f), x* € dpf(x), and t € (0,€) such that |¥* —tx*|| < e.

Proof. The space X X R is F-smoothand g : X x R — R.. given by g(x,r) := f(x)—r
is lower semicontinuous with drg(x,r) C dp f(x) x {—1}, so that ||z*|| > 1 forall z €
X xRandz" € dpg(z). Then E :=epif = {(x,r) € X xR: g(x,r) <0}. By definition
of 7 f(x), (x*,0) € Np(E,(X,7)), where 7 := f(X). Given € > 0, the preceding
theorem yields some 7 > 0, (x,r) € B((X,7),€/2), and (x*,r*) € dpg(x,r) such that
lg(x,r)| <&/2,[|(x%,0) —1(x", r")|| <& Thus |f(x) - f()| <&/2+|r— f(¥)| <&,
x* € drf(x), and ||¥* — rx*|| < €. Moreover, since r* = —1, we have f < €. O
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Exercises

1. Check that the notion of multiplier adopted in this subsection coincides with the
one considered in Sect. 3.5.4

2. Given a Banach space X and g : X — R™"", the Mangasarian—Fromovitz
qualification condition at X is as follows: '

(CQMF) (g}(X))1<i<m are linearly independent and there exists u € X such that
gi(@u=0fori=1,....m, g\ (Fu<0forj=m+1,....m+n.

Here g is assumed to be of class C! at X and one takes C := {0} x R" C Z :=
R™ x R". Show that condition (CQMF) is equivalent to the following dual condition:

(DCQMF) yi1 g (X) + - + Ymtn&min(X) =0,y; € R, fori=1,....m, y; € Ry for
j=m+1,...m+n—=—y,=0,h=1,... m+n.

3. With the data of the preceding exercise, show that (CQMF) is equivalent to the
Robinson constraint qualification condition

d@(X)-R(C—g[X) =2

4.7.4 Openness and Metric Regularity Criteria

As observed above, since we have a decrease index, we can obtain various metric
estimates. Here we focus on openness and metric regularity criteria for multimaps.
In order to get such estimates, given a multimap G : X == Y between Asplund spaces,
let us derive a description of the subdifferential of f := d(0,G(-)).

Lemma 4.131. Let G : X = Y be a multimap with closed graph between two
Asplund spaces and let f = d(0,G(-)), S := G~(0). Given x € X\ S and x* €
Or f(x), there exist sequences (u,) = x in X, (v,) in Y, (vi)) in Y, (u) — x* in
X* such that (||vy]]) = f(x), (IVill) = 1, va € G(xn), U}y € DG (utn,vi) (V) for all
n € Nand ((v},vn)) — f(x). Moreover, one can find a sequence ((zn,2),)) in 0 |||
such that (z, — vp) = 0, (vl —z) = 0.

Proof. Tt suffices to apply Corollary 4.73 with (W, X, €) changed into (X,Y,¢,),
where (g,) — 04+ and j(x,v) := ||v||. Then in place of (u,v,w,u*,v* x*) we get
(Uny iy zn, U, Vi, 20) With vy € G(un), ||[val| < f(x) + &, uy € D3G(un,va)(v)), 2 €
Al (zn)s |ufs — x*|| < &, ||V — 2| < &, for all n € N. Since G has a closed graph,
we cannot have liminf, ||v,|| = 0. We may take ||v, — z,|| < ||va||, so that ||z}|| = 1
and (z,,2zx) = ||zall. Since ((z3,22)) = (llzal) — f(x) and ((v; — z3,v4)) = O,
({z},vn — zn)) — 0, since (v,) and (z;) are bounded, one gets ((vi,v,)) — f(x).

O

Proposition 4.132. Let X € S := G~1(0), where G : X = Y is a multimap with
closed graph between two Asplund spaces. Suppose that for some c,r > 0 and for
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all x € B(x,r)\ S with f(x) :=d(0,G(x)) < cr there exist some € > 0 such that one
of the following conditions is satisfied:

(a) Forall u € B(x,€), v € G(u) with |||v|| — f(x)| < & z€ B(v,e), * € ||| (2),
v € B(z*,€), u* € DG(u,v)(v*), one has ||u*|| > ¢~ 1;

(b) Forallue B(x,e),ve G(u) with ||v|| — f(x)] <&, v* € Sy+, u* € DRG(u,v)(v¥)
satisfying |(v*,v) — f(x)| < &, one has ||u*|| > ¢ .

Then for all x € B(X,r/2) one has

d(x,S) < ¢ 'd(0,G(x)). (4.76)

Proof. Tt suffices to prove that for every b € (0,¢™ '), every x € B(%,r) \ S with
f(x) :=d(0,G(x)) < cr and every x* € dp f(x) one has ||x*|| > b. Suppose, to the
contrary, that there exist x € B(x,r) \ S, with f(x) < c¢r and x* € drf(x) such that
|x*|| < b. Let € > 0 be as in the assumption, and let (u,), (vn), (zn), (), (V).
(z}) be the sequences given in the preceding lemma. For n large enough one has
u:=u, € B(x,€),v:i=v, € G(u) with ||v|| = f(x)| < &,z:=z, € B(v,€), 2" :=7 €
|| (z), v* =V} € B(z*,¢e), u* =u), € D;G(u,v)(v*), and ||u*|| < b, a contradiction
to assumption (a). The result also holds in case (b), since assumption (b) is stronger
than assumption (a), the existence of (z,z*) € d||-|| N (B(v,€) x B(v*,€)) implying
that ||[v*]| — 1] < € and that (v*,v) is close to (z*,z), hence is close to ||z|, [|v]|, f(x).

O

Theorem 4.133. LetX € S := G~ '(0), where G : X =Y is a multimap with closed
graph between two Asplund spaces. Suppose that for some ¢ > 0 and some open
neighborhoods U of X, V of 0 and for allu € U\ S, v € G(u) NV, v* € Sy, u* €
D;G(u,v)(v*) one has ||u*|| > ¢~ '. Then for all x € U, relation (4.76) holds.

Proof. Let r > 0 be such that B(X,r) C U, B(0,cr) C V. Given x € B(%,r) \ S with
f(x) :==d(0,G(x)) > cr, relation (4.76) obviously holds. When f(x) < cr, taking
€ =min(r — ||x —X||,cr — f(x)), for u € B(x,€), v e G(u) N (f(x) + €)By, we have
ueU,veV,so that for every u* € D;.G(u,v)(v*), with v* € Sy+, one has |ju*|| >
¢~!, and Proposition 4.132 applies. a

Let us pass to metric regularity results.

Theorem 4.134. Let X andY be Asplund spaces, let U and V be open subsets of X
andY respectively, let F : X =2 Y be a multimap with closed graph, and let ¢ > 0.

(a) F is metrically regular on U XV with rate c if and only if for allu € U, v €
F(u)NV, v* € Sy, u* € DF (u,v)(v*) one has ||u*|| > ¢!

(b) FisopenonU xV with rate a:=1/cif and only if forallu € U, v € F(u)NV,
Vv € Sy+, u* € DiF (u,v)(v*) one has ||u*|| > ¢~ .

(c) M := F~' is pseudo-Lipschitzian on V x U with rate c if and only if for all
veV,ue Myv)NU, u* € X*, v* € DEM(v,u)(u*) one has ||v*]| < c||u*|.
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Proof. Assuming that
inf{||u"|| : u* € DpF(u,v)(v*), uc U, ve F(u)NV, v" € Sy«} >c,

let us prove that for all (x,y) € U x V we have d (x,F~'(y)) < cd (y,F (x)). This

follows from the preceding proposition, in which we set G(x) := F(x) —y and
replace V by V —y, so that D;.G(u,v)(v*) = Dj.F (u,v+y)(v*).

The sufficiency parts of (b) and (c) stem from what precedes and the equivalences

of Theorem 1.139. The necessity part of (c) has been established in Proposition 4.26;

by the mentioned equivalences, it entails the necessity parts of assertions (a) and (b).

O

4.7.5 Stability of Dynamical Systems and Lyapunov Functions

Let f : Xo — X be a vector field on an open subset X of a Banach space X and the
associated differential equation

X (1) =f(x(1)), x(0)=z,

where z € Xy is the initial condition. For the sake of simplicity, we suppose that
for all z € Xp this equation has a solution x;(+) := x(+,z) defined on [0, 4). Such
a property can be ensured by assuming a growth condition and some regularity
on f (alocal Lipschitz property, or, if X is finite-dimensional, just continuity). The
following concepts are classical in mechanics and in the study of dynamical systems.

Definition 4.135. A closed subset S C Xj of X is said to be stable for f if for every
€ > 0 there exists some & > 0 such that x(¢,z) € B(S,€) :={we X :d(w,S) < &}
forall (¢,2) € Ry x (B(S,8) NXp).

It is said to be attractive or asymptotically stable for f if it is stable and if there
exists some o > 0 such that for all z € B(S, &) N Xo, d(x(t,z),S) — 0 as t — oo.

Note that when S is stable for f, for every z € S one has f(z) € T?(S,z) (and
even f(z) € T!(S,z)), since S is invariant, i.e., x;(t) € Sforallt € Ry and all z € S.
In particular, when S is a singleton {a}, we have f(a) = 0.

Lyapunov introduced a method to ensure these stability properties. It extends the
simple observation that S is stable for f if one can find a differentiable function
q: Xo — Ry satisfying ¢’ (x) - f(x) <0 for all x € X, and the condition

q(x) > 0<=d(x,S) = 0. (4.77)

In fact, in that case, given € > 0, let y > 0 and & > 0 be such that ¢! ([0,7]) C B(S, €)
and B(S,8) C ¢ '([0,7]). Then for every z € B(S,§), one has x(¢,z) € B(S, ) for
all t € Ry, since the function ¢t — g(x(¢)) is nonincreasing because we have

(qox:)'(t) = ¢ (x(1)) - f(x:(r)) < 0.
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A similar argument holds if ¢ is a differentiable Lyapunov function for S, i.e., a
differentiable function g : Xy — R satisfying (4.77) and for some c € R,

VxeX, q (x)- f(x)+cq(x) <0.

In such a case the function ¢ — e¢“q(x,(f)) is nonincreasing, so that one has
q(x:(1)) < e “gq(x;(0)) = e “q(z) for all r € R;. Moreover, we note that when
c is positive, § is attractive.

As shown by examples, it is of interest to extend the preceding method to
nonsmooth Lyapunov functions. Let us say that a lower semicontinuous function
g : Xo — Ry is a Lyapunov function for S if it satisfies condition (4.77) and
(x*, f(x)) +cq(x) <0 forall x € X. We also say that (p,q,c) is a Lyapunov triple for
SifceRy, p,q:Xo — Ry, piscontinuous, g is lower semicontinuous and satisfies
(4.77), and p, g, c satisfy the following conditions:

(L) (x*, f(x)) + p(x) + cg(x) <0 forall x € Xp and all x* € drq(x);
(L2) when ¢ =0, then p is Lipschitzian on bounded subsets, g is unbounded on
unbounded subsets, and p(x) — 0 = d(x,S) — 0.

Clearly, if (p,q,c) is a Lyapunov triple, then ¢ is a Lyapunov function.

Theorem 4.136. Suppose X is F-smooth. If f is locally Lipschitzian and q is a
Lyapunov function for S, then S is stable.

If (p,q,c) is a Lyapunov triple for S, then S is attractive, provided that in the case
¢ =0, f is bounded on bounded subsets.

Proof. In order to show the stability of S in both cases, it suffices to prove that for
all z € X, the function ¢ — e q(x;(t)) + [5 e p(x;(s))ds is nonincreasing on R..
Since x; and p are continuous, the last term is differentiable. To study the first one,
let us use a special case of the Leibniz rule for dg: if g,h: W — R are two lower
semicontinuous functions on an open subset W of a normed space, h being positive
and differentiable, then

VxeW, d(gh)(x) = h(x)dg(x) + g(x)h' (x).

Taking W := (0, +e0), g(t) := q(x(¢)), h(t) := e and using Corollary 4.98, we
are led to check that (L1) implies that for all # € R, t* € dg(r) one has

e“t* +ceq(x, (1)) +e“ p(x,(t)) <0, (4.78)

R being identified with its dual. Since t* € dr(q o x;)(f) and since ¢ is inf-
compact on the image under x; of a compact interval, Theorem 4.70 yields
sequences () — £, (1) = 1, (ya) —q 2:(0), (v7), () such that ([ly; — vil}) — 0,
(vl Nxz () — yall) — 0, with y% € dg(yn), 1y € Dix;(t2)(v};) for all n € N. The last
relation means that 7, = (vi, x.(t,)) = (v, f(xz(t,))). Since f is locally Lipschitzian

and (xe(t)) = 2 (2), ([Val] - [|¥2(t2) = yall) = 0, from (L1) we get



354 4 Elementary and Viscosity Subdifferentials
1" =1im{v,,, f(va)) =lim{y,, f(va)) <limsup(—p(ya) = cq(ya))-
n

Since p and ¢ are lower semicontinuous, we obtain t* < —p(x,(t)) — cq(x;(¢)) and
(4.78), and hence the stability of S.

Let us turn to the second assertion. When ¢ > 0, condition (4.77) and the fact
that t — e g(x;(¢)) is bounded ensure that d(x;(¢),S) — 0 as t — +e. When ¢ =0,
since gox; is bounded on R, x; (IR} ) is bounded. By (L2) and our assumption on f,
poux, is Lipschitzian. Since [, p(x;(s))ds is finite, it is easy to see that p(x.(s)) — 0
when s — oo (exercise). Then (L2) ensures that d(x;(s),S) — 0 as s — oo. O

Exercises

1. Prove the fact used in the proof of Theorem 4.136 that if r : Ry — Ry is
Lipschitzian and integrable on Ry, then r(¢) — 0 as r — +oo.

2. Given a function g : R? — R, of class C!, let f : R — R? be defined by

Fx,y) = (—y —xg(x,y),x —yg(x,y)).

(a) Check that ¢ given by ¢(x,y) := x> +y? is a Lyapunov function for § := {(0,0)}.
(b) Check that S is attractive if for some ¢ > 0 one has g(x,y) > ¢ for all (x,y) € R2.

3. (a) Let X be a Hilbert space and let A : X — X be a symmetric continuous linear
map that is positive semidefinite, i.e., such that g(x) := (Ax | x) > 0 for all x € X.
Show that S := {0} is stable for the vector field f given by f(x) := —Ax. Show that
S is attractive if A is positive definite, i.e., if for some ¢ > 0 one has g(-) > ¢ ||-||*.
(b) Let f be a vector field of class C! on a Hilbert space X such that A := — f/(0) is
positive definite. Show that S := {0} is attractive. [Hint: Use ¢ as in (a).]

4. Use a Lyapunov function to show that § := {(x,y) € R? : x> +y? = 1} is a
stable set for the vector field f given by f(x,y) := (y, —x). [Hint: Take g(x,y) :=
32 =1]]

5. Consider the differential equation x(¢) = —(1/4)x(¢) (x(¢) + 4) (x(¢) — ) which
occurs in population models. Let ¢ : R —R be glven by g(x) := (x+4)? for x €
(—o0, —1], g(x) := 4ooforx € (—1,1), g(x) = (x —2)? for x € [1,+o0).

(a) Show that S := {—4,2} and q are such that g(x) — 0 if and only if d(x,S) — 0.
(b) Check that g is a Lyapunov function for S. Conclude that S is attractive.
(See [996].)

6 Show that the function g : R> — R, given by ¢(x,y) ‘x +y*— 1‘ when x? +
y > 1/2, 40 otherwise, is a Lyapunov function for the unit circle S in R? when
one considers the vector field f given by

flry) = (—y+x(1—x* =), x+y(1 —x*—»?)).
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7. LetC be the Cantor set consisting of the set of x € [0, 1] whose ternary expansion
x = Y,>137"x, with x, € {0,1,2} is such that x, # 1 for all n. Since C is closed,
[0,1]\ C is the union of a countable family of open intervals (ay, by ). Define g : C —
R by g(x) := 3,51 27" 'x, forx:= 3,53 "x, € C.

(a) Show that g(ax) = g(by) for all k. [Hint: Observe that a; = 0.x;...x;0222. ..,
while by = 0.x1...x;2000..., so that ¢ can be extended by continuity by setting
q(x) = g(ax) = q(by) for x € (ay,by). Extend further ¢ to R by requiring it to be
even and by setting g(x) = 1 forx > 1.]

(b) Show that g(x) — 0 < d(x,S) — 0 for S := {0} and that the set of differentiabil-
ity points of ¢ is R\ (CU(—C)) and for such points x one has ¢’(x) = 0. Conclude
that the condition ¢’ (x) - f(x) < 0 at all points of differentiability of ¢ does not suffice
to ensure that § is stable (otherwise, for every vector field, S would be stable). (See
[136,137].)

4.8 Notes and Remarks

The definition of a derivative with the help of a convergence on the space of
functions from X to Y, as given in the supplement, is due to G. de Lamadrid [610];
see also [49,307,946,947] for supplements and historical information. Although the
generalization of Fréchet and Hadamard subdifferentials to bornological subdiffer-
entials is alluring, we resisted the attraction of such a systematic generalization.

The origins of Fréchet subdifferentiation are not easy to detect. They were used
early on, in [244,352,363,602,603]. For Hadamard subdifferentiation, see [78, 780,
782], which were written independently (the manuscript of the last paper remained
four years in the hands of the referee or of the editor). It is not known to the author
whether dy = dp in Hadamard smooth spaces, even in the case that S; := ey
is a smooth submanifold of X and (u,r) — ru realizes a diffeomorphism from S; x
(0, +e0) onto X \ {0}, as is the case when j is a smooth norm (off 0).

The passages from analytic notions to geometric concepts is one of the key fea-
tures of nonsmooth analysis. Corollary 4.17 is taken from [413] for the directional
case. Proposition 4.22 appeared in [119, Lemma 6]. We give some attention to
order properties, which have often been neglected up to now, a surprising fact, since
nonsmooth analysis pertains to one-sided analysis. Proposition 4.49 is new.

Tangent cones in the nonregular case were introduced by Bouligand [158, 159];
see also Severi [891]. Their study was included in a general framework by Choquet
[209]. The use of tangent cones in optimization was initiated by Dubovitskii and
Miljutin [327,328]; see also [619]. Their viewpoint was only partially dualized. For
analytical concepts, Pshenichnii [853] was the pioneer; then Clarke [211,214] and
numerous authors made other proposals. They will be considered in the next chapter.
A general comparison was given by Ioffe [519].
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The fuzzy viewpoint is of fundamental importance. It was initiated in [513,715,
and others] and developed in [362,363,516-528, 603,718]. Theorem 4.110 can be
found in [528,995]. The weak fuzzy rules are typical of the work of Toffe.

The concept of linearly coherent family is due to Ioffe [529]. The sum rule under
a linear metric qualification condition was devised by loffe for his subdifferential
in [530, 531]. Linear coherence is called local linear regularity or bounded linear
regularity in several papers [67,76,77,992]. In the convex case, a global version can
be given to this property that is quite unexpected in the nonconvex case.

The subsection about softness is adapted from [823].

The subsection about value functions incorporates results from [820] and gives
a simplified version of [821]. The latter paper was prompted by genericity results
about the existence of optimal solutions to the problem of minimizing F,, := F (w, ).
Such results require circa (or strict) differentiability of the performance function p;
differentiability properties would not suffice. These results are in the line of the
work by Ekeland and Lebourg [352]; see also [37,341,565,623,809,877,878,999].
In order to get genericity properties, one has to rely on deep results of Preiss [850].

For the applications of these strict or circa differentiability results to existence
and genericity properties, we refer to [821], and for previous results of this kind,
to [37,72, 108, 352, 623,999, 1000] and their bibliographies; they might also be
relevant to the methods of [551]. The last example of Sect.4.7.2 giving a differen-
tiability property of the distance function to a subset of a normed space is a variant
of results of [396, Corollary 3.5], [784, Proposition 1.5], [810, Corollary 2.10], [999,
Corollary 2] given under additional smoothness properties of the norm or additional
assumptions on X. The terminology * marginal function” is used by economists.
Some mathematicians use it both for supremum and infimum functions. In order to
avoid confusion, we keep the terminology * marginal function” for supremal value
functions and we strive to propagate the terminology “ performance function” for
infimal value functions. That allows one to make a clear distinction.

The regularization we consider is of Moreau type; for simplicity, we do not take
a general regularization kernel as in [157,204, 205] but limit our illustration to an
infimal convolution process as in [25, 810]. For other results about regularization
processes in Banach spaces, see [157, 204, 205, 904]. In these references X is
complete and f is assumed to be bounded below; on the other hand, as in the Lasry—
Lions method for Hilbert spaces [613], an iteration of the regularization process
enables one to get rid of the convexity condition made above.



Chapter 5
Circa-Subdifferentials, Clarke Subdifferentials

The days of our youth are the days of our glory.
—Lord Byron

We devote the present chapter to one of the most famous attempts to generalize the
concept of derivative. When limited to the class of locally Lipschitzian functions,
it is of simple use, a fact that explains its success. The general case requires a more
sophisticated approach. We choose a geometrical route to it involving the concept
of normal cone. It makes easy the proofs of calculus rules. In fact, in this theory,
a complete primal—-dual picture is available: besides a normal cone concept, one
has a notion of tangent cone to a set, and besides a subdifferential for a function
one has a notion of directional derivative. Moreover, inherent convexity properties
ensure a full duality between these notions. Furthermore, the geometrical notions are
related to the analytical notions in the same way as those that have been obtained
for elementary subdifferentials. These facts represent great theoretical and practical
advantages.

However, some drawbacks are experienced. The main one concerns the lack
of precision of the approximations to sets given by tangent cones and directional
derivatives for functions: the convexification process that comes on top of the
limiting process that yields the notions of the present chapter mostly explains this
lack of accuracy. As a result, the Clarke subdifferential is often too large, and an
inclusion of the form 0 € d f(x) may not bring much information; correspondingly,
the normal cone of Clarke is often too big to produce every usable information: for
instance, an inclusion of the form —f”(x) € N¢(S,x) is of no use if the normal cone
N¢(S,x) to S at x (in the sense of Clarke) is the whole space.

Nonetheless, the tools we present in this chapter can serve as surrogate smooth
concepts, especially in a first stage or when no other result is available. Many articles
and books have adopted such a strategy. We devote the last section of the chapter to
slightly more precise variants. They keep the main features of Clarke’s concepts.

J.-P. Penot, Calculus Without Derivatives, Graduate Texts in Mathematics 266, 357
DOI 10.1007/978-1-4614-4538-8_5, © Springer Science+Business Media New York 2013
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5.1 The Locally Lipschitzian Case

In this chapter X is a Banach space, W is an open subset of X, and . (W) denotes the
set of locally Lipschitzian functions on W. It forms an important class of functions
on W enjoying nice stability properties. The possibility of extending differential
calculus to such a class in a simple way makes Clarke’s approach alluring.

5.1.1 Definitions and First Properties

The definition of the Clarke derivative of a locally Lipschitzian function is simple.

Definition 5.1. The Clarke derivate (or circa-derivate) f€(x,-) of f € L(W) at
x € W is defined by

fC(x,u) ;== limsup M, ueckX.

(1,w) = (04 %) 4
The Clarke subdifferential of f at x is the support set of f€(x,-) given by
dof(x) = {x* € X*: (x*,)) < fC(x,)}.

Simple consequences of this definition can be drawn, and simple calculus rules
can be derived, both for the subdifferential and for the derivate. We start with the
latter.

Proposition 5.2. Let f € £ (W) and let x € W. Then

(a) The function f€(x,-) is finite and sublinear;

(b) Ifk is the Lipschitz rate of f near x then | f€(x,-)| < k||| ;
(c) fC€(-,-) is upper semicontinuous on W x X;

(d) f€(x,—u) = (—f)C(x,u) for all (x,u) € W x X.

Proof. (a) The finiteness of fC(x,-) and assertion (b) stem from the inequality
t~Vf(w+tu) — f(w)| <k|u||, where k is the Lipschitz rate of f on a neighborhood
of x. Since fC(x,-) is obviously positively homogeneous, let us prove that it is
subadditive. Given u,v € X, let us write

fovttutv) = fw) _ fOvttutov) = flwtou) fOwtiu) = fw)

t t t

and use the fact that the upper limit of a sum is not greater than the sum of the upper
limits of the summands. Here the upper limit is taken over (¢,w) — (04,x), so that
w4 tu — x, and the upper limit of the first term of the right-hand side is bounded
above by f€(x,v), while the upper limit of the second term is exactly f€ (x,u). Thus
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FEu+v) < fC0xv) + fC(xu).

(c) Let (x,u) € W x X and let ((x,,u,)) — (x,u). For each n € N we can find
(ta,wn) € (0,27") X B(x,,27") such that £, ' (f(wy + tattn) — f(Wn)) > € (X, tn) —
27" Then (w,) — x and if k is the Lipschitz rate of f on some V € .4 (x), we get

limsup £ (x,, u,) < limsupz, ' (f(wy + taity) — f(w,))

< limsupt, L (f (W + tate) — f (Wn) + k ||tnttn, — taue]) < £ (x, ).
n

(d) Setting z := w — tu, we get that (¢,z) — (04,x) iff (r,w) — (04,x), hence

fO(x,—u) = Timsup 1~ (f(w—1u) = f(w))

(t7w)ﬂ(0+ !x)

< limsup 11 (=) (z+1u) = (—f)(2) = (=) (xu).

(1.2) (04 )

Similarly, for v := —u, one has (—f)(x,—v) < fC(x,v), hence (—f)¢(x,u) =
fc(-x7 _M) D

Using duality, corresponding properties can be derived for the subdifferential.
Proposition 5.3. Let f € £ (W) and let x € W. Then

(a) The set dcf(x) is a nonempty weak®™ compact convex subset of X*;

(b) If f is Lipschitzian with rate k near x then ||x*|| < k for each x* € dc f(x);

(c) If ((xn,x},)),, is a sequence in W x X* such that (x,) — x, x;, € dc f(x,) for all n
and (x}) has a weak* cluster point x*, then x* belongs to dc f(x);

(d) dc(—=f)(x) = —dcf(x).

Proof. (a), (b) The nonemptiness of dc f(x) := 9 € (x,-)(0) results from the Hahn—
Banach theorem and the fact that fC(x,-) is sublinear and continuous. If f is
Lipschitzian with rate k near x, then for x* € dcf(x), one has |(x*,)| < |fC(x,-)| <
k|||, so that ||x*|| < k. Since dc f(x) is clearly weak™ closed, it is weak™ compact.

(c) Let ((xn,x})),, be a sequence in W x X* such that (x,) — x, x} € dcf(x,) for
all n and (x}) has a weak™ cluster point x*. Then for all u € X one has

(x*,u) < limsup(x’,u) <limsup £ (x,,u) < f€(x,u)
n n

by assertion (c) of Proposition 5.2, so that x* € d¢ f(x).
(d) One has x* € de(—f)(x) iff for all u € X, setting v := —u, one has (x*,v) <
(_f)c(xuv) = fc('x7 —V) or <—X*,M> = <X*7v> < fc('xvu) iff —x* € aCf(x) U

Corollary 5.4. If f € L (W), then the multimap dc f(.) is upper semicontinuous on
W for the weak™ topology on X*.
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Proof. Suppose, to the contrary, that for some weak* open subset V of X* containing
dcf(x) there exist sequences (x,) — x and (x}) with x* € dcf(x,)\V for all n € N.
If f is Lipschitzian with rate k near x, then ||x|| < k for all n large enough. Thus (x})
has some weak™ cluster point x* € kBx+. By assertion (c) of the preceding statement,
we have x* € dcf(x). Then for some n € N, we have xj;, € V, a contradiction. Thus
one has dcf(x') C V for x’ close to x. O

The correspondence between f€ and d¢ f can be inverted, thanks to the symmetry
of the Minkowski—Hormander duality between closed convex subsets of X* and
their support functions.

Proposition 5.5. Let f: W — R be a locally Lipschitzian function. Then
V(x,v) e W x X, £ (x,v) = max{x*(v) : x* € dcf(x)}.

Later on, we will make a comparison with the subdifferential of convex analysis
for f convex. Let us now make a comparison with the directional subdifferential.

Proposition 5.6. Let f: W — R be a locally Lipschitzian function. Then
\V/(X,V) eWxX, fc(xav) ZfD(x,v), an(x) CaCf(x)'

In particular, if f € £ (W) is Gateaux differentiable at x, one has Df (x) € dcf(x).
If f is circa-differentiable (=strictly differentiable) at x, then dc f (x) = {Df(x)}.

Proof. The inequalities € (x,v) > limsup, o, ¢t~ '(f(x+1v) = f(x)) > fP(x,v) are
obvious and yield the announced inclusion. If f is Hadamard differentiable at x, in
particular if f is a locally Lipschitzian function and is Gateaux differentiable at x,

we have dp f(x) = {Df(x)}, hence Df (x) € dcf(x).
When f is circa-differentiable at x, it is Lipschitzian around x, and from the
definition of f€ one sees that f€(x,-) = Df(x). It follows that dc f(x) = {Df(x)}.
O

Exercise. When f is just differentiable at x, one may have dc f(x) # {Df(x)}. Find
an example. [Hint: Use a construction as in Exercise 7 of Sect. 5.2.]

Corollary 5.7. For f € £ (W) andx € W one has P f(x) C dc f(x), where 9P f(x)
is the set of weak® cluster points of sequences (x;) with xj; € dpf(xn) for some

sequence (x,) with limit x.

Corollary 5.8. Ifa locally Lipschitzian function f : W — R attains its minimum on
W at x, then 0 € de f(x).

Proof. Tn such a case one has f?(x,-) > 0,0 € dpf(x), hence 0 € dcf(x). O

Because dcf(x) may be large, such a conclusion is not always particularly
informative. However, it can be exploited because the Clarke subdifferential satisfies
good calculus rules, as we will show in the next subsection.
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5.1.2 Calculus Rules in the Locally Lipschitzian Case

These rules are direct consequences of Proposition 5.3 and the rules for computing
upper limits.

Proposition 5.9. Let f : W — R be a locally Lipschitz function on an open subset
W of X. Then dc(— f)(x) = —dcf(x) and for all r € R one has dc(rf)(x) = rdc f(x).

Theorem 5.10. Let f,g : W — R be locally Lipschitz functions. Then

dc(f +g)(x) C dcf(x) + decg(x),
dc(f Vv g)(x) Cco(def(x)Udcg(x)).

Proof. The first relation is a consequence (via the equality dcf(x) = € (x,-)(0)
and the corresponding rule of convex analysis) of the inequality

(f+8)°(x,) < £, X,

following from the fact that the upper limit of a sum is bounded above by the sum
of the upper limits of the summands.

In order to prove the second relation it suffices to compare the support functions
of both sides. Let i := fV g := max(f,g), letu € X, and let (x,1,) — (x,04) be such
that h€ (x,u) = lim, #, ! (h(x, +t,u) — h(x,)). Taking a subsequence and exchanging
the roles of f and g if necessary, we may suppose h(x, + fu) = f(x, + t,u) for all
n € N. Then since h(x,) > f(x,), we have

RE (x,u) < limsupt, ' (f(xn + o) — f(x0)) < fC(x,u) < F€(x,u) v g€ (x,u).
n
Since f€(x,-) vV g%(x,-) is the support function of the weak* compact convex set

co(dcf(x) Udcg(x)), we get the result. O

These rules can be extended by induction to every finite families of .2 (W). More
precisely, if (f1,..., f¢) is a finite family of £ (W), setting

f(x) := max fi(x), I(x):={ie{l,....k}: filx) = f(x)},

1<i<k

using the fact that f = max{f; : i € I(x)} on a neighborhood of x, one has

dc f(x) C co(Uies(x)dcfilx))-

More rules can be obtained with the help of an appropriate mean value theorem.
We deduce this mean value theorem from the following special composition rule.

Lemma 5.11. Suppose f : W — R is locally Lipschitzian and W contains the
segment [x,y]. Then the function h given by h(r) := f(x,) with x, :==x+r(y —x)
is Lipschitzian on [0,1] and for all r € [0,1] one has
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dch(r) C{acf(xr),y—x) :={{x*,y—x):x* € dcf(xr)} (5.1)

Proof. The fact that & is Lipschitzian stems from the compactness of [0, 1]. Since
the two closed convex sets appearing in relation (5.1) are compact intervals of R,
it suffices to prove that for v = —1, 41 one has

max{r'v:r* € dch(r)} < max{{x",y —x)v:x" € dcf(xr)}.
The left-hand side is 4 (r,v). Since x+s(y —x) — x, as s — r, the right-hand side is

PGy —x)) > limsup ~ (f(x+5(y—x) +1v(y —x)) — Flr+ 5(y—))

(t5) =050 T
1
= limsup — (h(s+1v) —h(s)) = h(r,v),
(t5) =050 T
and the inequality justifying the statement is proved. O

Theorem 5.12 (Lebourg’s mean value theorem [621]). Let f: W — R be locally
Lipschitzian on an open subset W of X containing [x,y]. Then there exist some w €
I, yi={(1—t)x+1ty:t € (0,1)}, w* € dcf(w) such that

FO) = flx) = (w"y—x).

Proof. Let h: R — R be given by h(r) := f(x,) for x, := x+r(y — x) and let k be
given by k(r) = h(r)+r[f(x) — f(y)]. Since k is continuous and k(0) = k(1) = f(x),
there is some r € (0, 1) such that k attains either its minimum or its maximum on
[0,1] at r. Let w := x,. By Corollary 5.8 one has 0 € dck(r). Using Theorem 5.10
and Lemma 5.11, one gets 0 € (dcf(w),y —x) + f(x) — f(y). O

We are in a position to derive chain rules and other calculus rules.

Theorem 5.13 (Chain rule). Let X and Y be Banach spaces, let W (resp. Z) be an
open subset of X (resp.Y), let g:W — Y, h: Z — R be locally Lipschitz maps such
that g(W) C Z, and let f :=hog.

(a) IfY =R", setting g :== (g1, . -,&n) and denoting by €6* (A) the w*-closed convex
hull of a subset A of X*, for all x € W one has

dcf(x) Ceo™{dc(y o g)(x):y" € dch(g(x))} (5.2)
cco’ {iyfacgi(@ Y =010 € 9ch(g(x))} : (53)
i=1

(b) If g is circa-differentiable (=strictly differentiable) at x € W, then

def (x) C dch(g(x)) o g (x).

(c) If, moreover, g'(x)(X) =Y, this inclusion is an equality.
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Proof. The local Lipschitz property of f is straightforward. Let x € W, y := g(x).

(a) The inclusion dcf(x) C €0*(A), with A := {dc(y* 0 g)(x) : y* € dch(y)},
is equivalent to the inequality fC(x,-) < sup(A,-) between the respective sup-
port functions. Given u € X, we pick a sequence ((f,,x,)), — (04,x) such that
lim, (1/2,) (f (e +tart) — £(xn)) = f€(x,u). Let y, € [g(xn),8(x +t,u)] and y}; €
dch(yn) be given by the Lebourg’s theorem (Theorem 5.12):

S o+ tg1e) — f () (g (0 + 1)) — h(g(xn)) = (Vs §(Xn +tutt) — g(xn)).  (5.4)

Since g is continuous, we have (y,) — y := g(x), and since dch is locally bounded,
we may assume that (y}) has a weak® cluster point y* that belongs to dch(y) by
assertion (c) of Proposition 5.3.

Since (1, '(g(xn + taut)) — g(x4))), is bounded and (y;) — y* in norm, since Y is
finite-dimensional, we get ((y —y*, ¢ (g(x, + taut) — g(xn))))n — 0, whence

fC(x, u) = lim <y*ug(xn+tnu) — 8(xn)) < (y* Og)c(x, u).

n t,

Now, there exists some x* € dc(y* o g)(x) such that (y* 0 g)¢(x,u) = (x*,u). Thus
x* € Aand f€(x,u) < (x*,u) <sup(A,u). Relation (5.3) follows from relation (5.2),
Theorem 5.10, and Proposition 5.9, since y* o g = yjg1 + -+ ¥ gn.

(b) Let us suppose now that g is circa-differentiable at x € W. Let u € X and let
((ta,xn)),, — (04,x) be chosen as above. Applying again the mean value theorem,
we get some y, € [g(xn),8(x, +1,u)] and some y; € dch(y,) such that relation (5.4)
holds. Let x* € dcf(x) and let y* be a weak™ cluster point of (y}). By circa-
differentiability of g, we have (1, (g(x, 4 taut) — g(x4))), — &'(x) (u), so that

im 2 (£ ) = 5)) =l 078+ 1) — gL2) = 07,6 1)

It follows that (x*,u) < f€(x,u) < sup{(y* og'(x),u) : y* € dch(y)}. Since dch(y)
is weak* compact, dch(y) o g'(x) = g'(x)T(dch(y)) is weak* compact, hence weak*
closed (and convex). Since u is arbitrary in X, it follows that x* € g'(x)T(dch(y)).
(c) Finally, suppose that g is circa-differentiable at x € W and g'(x)(X) =Y.
Then the Graves—Lyusternik theorem ensures that g is open at x. Thus, for every
sequence (y,) — y, one can find a sequence (x,) — x such that g(x,) =y, for n
large. Givenu € X, v:= g’ (x)(u), let us take (y,) — ¥, (t,) — 0 such that i€ (y,v) =
lim,, (1/t,)(h(yn + t,v) — h(y,)). Now, since g is circa-differentiable at x, we have
Yo+ tav = g(xn) + tng’ (x)u = g(x, + tyt) + 1,24, where (z,) — 0. Since h is locally
Lipschitzian, we get h(y,v) = lim,(1/t,)(h(g(xn + taut))) — h(g(xn)) < f€(x,u).
Thus, for all y* € dch(y), we have y* o g’(x) < fC(x,-) and y* o g'(x) € dcf(x). O

Results involving order are scarce for Clarke subdifferentials. In particular, the
homotonicity property d f(¥) C dg(x) when f < g and f(X) = g(¥) is not satisfied
for d = dc, as the example of f := —|-|, g =0 on X := R, with ¥ := 0 shows. Thus,
the next results are noteworthy.
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Proposition 5.14. Let V and W be two Banach spaces, let A € L(V,W) with W =
A(V),veV,w:=Avand let j and p be locally Lipschitzian functions on V and W
respectively such that poA < j and such that for all sequences (wy) — W, (04,) — 04
one can find a sequence (v,) — 7 satisfying A(v,) = wy, and j(v,) < p(wy) + o, for
all n € N. Then one has

AT(dcp(W)) C dcj(v). (5.5)

When p is the distance function dg to some closed subset S of W, the requirement
can be restricted to sequences (w,) — W in S.

Proof. Let w* € dep(w) and let v € V, w := Av. Let us pick sequences (z,) — 0,
(wy) — w such that (1/t,)(p(wy + t,w) — p(wy)) — p€(w,w). By assumption, we
can find a sequence (v,) — ¥ such that A(v,) = w, and j(v,) < p(wy) + 2 for all
n € N. Since p(w, +t,w) < j(vy +1,v) and —p(w,) < —j(v,) +12, we have

(AT ) = (% w) < pC(7,w) < limsuptl( (n +ta) — (o) +12) < C@).
n n
Since v is an arbitrary element of V, this means that ATW* € dcj(¥).

When p := dj for a closed subset S of W, given W* € dep(W), v €V, w:= Ay,
(tn) = O, (wy) — W such that (1/1,)(ds(wn + taw) — ds(wn)) — dS (W, w), we pick
w!, € S such that ||w/), —wy|| < ds(w,)+ 2. Then we can find a sequence (v,) — ¥
such that A(v,) = w/, and j(v,) < t? for all n € N. Since ds(w, +t,w) < ds(w), +
taw) + [[wy — w),||, we have

d$ (w,w) < limsupt, ! [(ds(wy, +taw) + || wa — wh|]) = (||wh — wal| —t,%)]

n

< limsupt;1 [j(vn +1yv) +t,ﬂ < limsupz‘,f1 [j(vn +1,v) — jvn) + 2t,ﬂ
n n
< Jj ).

Thus (ATw*,v) = (w*,w) < d§ (w,w) < j€(v,v) forall v € X and ATW* € dcj(v). O

Exercises

1. For f,g € Z (W), show that dc(f A g)(x) C co(dcf(x)Udcg(x)) with fAg:=
min(f, g).

2. (Danskin’s theorem) Let X be a Banach space and let S be a compact metric
space. Given a function g : S x X — R that is jointly continuous and whose derivative
with respect to the second variable exists and is jointly continuous, let f be the
marginal function given by
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f(x) := maxg(s,x).
ses
Show that f is locally Lipschitzian and that for all x,v € X one has
FC(x,v) = fP(x,v) = max{D,g(s,x).v: s € S(x)},

where S(x) := {s € S: g(s,x) = f(x)}. Show that dc f(x) = co{Dg(s,x) : s € S(x)}.
3. (a) With the assumptions of the preceding exercise, suppose that for some
X € X one has D,g(s',X) # Dg(s”,X) whenever s’ # s” in S. Assuming that f is
differentiable at X, show that S(X) is a singleton.

(b) Let E be a closed subset of a Euclidean space X and let X € X\ E be such that
dg is differentiable at X. Show that there is a unique best approximation e of X in E
and that Vdg () = (x —e)/ ||x —e||. [Hint: Take S := ENB(X,r) for r > dg(X) and
define g by g(s,x) := — ||s — x||.]

4. With the notation of Exercise 2, suppose that S is a compact subset of the dual Y'*
of a Banach space Y and that g(s,x) = (s,h(x)) for (s,x) € S x X, where h: X — Y is
a locally Lipschitzian map. Check that f is locally Lipschitzian and show that when
for some X € X, the set S(%) is a singleton {7*}, then dc f(X) C dc(¥* o h)(X).

5. For f € Z(W), where W is an open subset of X and x € W,v € X, show that
€ (x,v) =limsup,,_,, f2(w,v), where fP(w,-) is the lower derivate of f at w.

6. (Leibniz rule) Let g,h € # (W), where W is an open subset of X. Show that
dc(gh)(x) C dc(g(x)h(-) +h(x)g(-))(x) C g(x)dch(x) + h(x)dcg(x).

Suppose A(W) C P. Show that dc(g/h)(x) C h(x)%(h(x)dcg(x) — g(x)dch(x)).

7. Let X be a Hilbert space identified with its dual X* and let f € Z(X). Given
X € X, let ¥* be the element of least norm of d¢f(¥). Show that —x* is a direction
of descent for f in the sense that for # > 0 small enough, one has f(x —x*) <

FE@) = (1/2) |5

5.1.3 The Clarke Jacobian and the Clarke Subdifferential
in Finite Dimensions

In finite dimensions, a characterization of the Clarke subdifferential can be given
using the famous Rademacher’s theorem, several nice proofs of which are available
(see [218,360], for instance).

Theorem 5.15 (Rademacher). A locally Lipschitzian function f on R? is differen-
tiable on a set whose complement has (Lebesgue) measure 0.
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We can deduce from this result an important representation of dc f.

Theorem 5.16. Let f: W — R be a Lipschitzian function on an open subset W
of RY. Let N be a set of measure zero in W and let Ny be the set of points of W at
which f is not differentiable. Then, for all X € W, dc f(X) is the convex hull C(x)
of the set A(X) of limits of sequences (x) such that for some sequence (x,) — X in
Z :=W\(NUNy) one has x}, = f'(x,) for all n:

dcf(X) = co{x™: A(x,) =z %, I(x) = x*, Vne Nxi = f'(x,)}. (5.6)

Proof. Let us first observe that the set A(X) between curly braces in the above
formula is nonempty, since Z is dense in W and f” is bounded on Z. Thus A(X)
is compact and (by Carathéodory’s theorem) C(X) is compact too. Proposition 5.3
(c) ensures that A(X) is contained in dcf(X), so that by the convexity of dcf (%),
the convex hull C(X) of A(X) is also contained in dcf(X). In order to prove that
this inclusion is an equality, it remains to prove that the support function of C(%)
(or A(X)) is not less than the support function f€(%,-) of dcf(¥) or that for every
unit vector v of R,

FE@E,v) < sup{(x*,v) : x* € A(T)}. (5.7

Let r > sup{(x*,v) :x* € A(X) }. A compactness argument using the boundedness
of dc f around X shows that there exists some 6 > 0 such that for all z € ZNB(X,20)
one has f'(z).v < r. Since (N UNy) N B(¥,28) has measure 0, it follows from
Fubini’s theorem that for almost all z € B(,6) the line segment L, := {z+tv :
t € (0,68)} meets (NUNy)NB(X,20) in a set of one-dimensional measure zero. For
suchazandt € (0,6) one has z+ [0, 8]v C B(x,20), hence f’(z+sv)-v < rand

flz+1v)—f(z)= /Otf/(z+sv) -vds < rt. (5.8)

Since f is continuous, this inequality is in fact valid for every z € B(X, 8) and every
t € (0,8). It follows from the definition of € that f€(¥,v) <r. O

Let us give an outline of a notion that is related to the preceding result.

Definition 5.17. Given a locally Lipschitzian map g : W — R”, where W is an open
subset of R"”, and a set N of measure zero in W, the Clarke Jacobian or circa-
Jacobian of g at X € R" is given by the following formula, in which Z := W\
(NUNp), N, being the set of points of nondifferentiability of g:

dcg(xX) = codrg(x), where drg(x) :={A:3(xx) =z 7%, (g (xx)) — A}
A version of Rademacher’s theorem asserts that Ny has measure zero. Thus, we

see that dcg(X) is a nonempty compact convex subset of L(R",R”) that is obviously
contained in the product of the subdifferentials at X of the components of g. We
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admit the fact that dcg(X) does not depend on the choice of the measure-zero set N
[956]. Theorem 5.16 ensures that for p = 1 this definition of dcg(%) coincides with
the one given earlier.

Proposition 5.18 (Vectorial mean value theorem). Ler g : W — R” be locally
Lipschitzian, where W is an open convex subset of R". Then for all x,y € W one has

g(y) —g(x) € co(deg([x,y]) - (y —x)).

Proof. Let us first consider the case in which [x,y] NN, is a set of one-dimensional
measure zero. Then since deg([x,y]) is compact,

g(y)—glx) = /01 g (x+1(y—x))- (y—x)dr C co(dcg([x,y]) - (v — x)).

The general case is obtained by a passage to the limit, using a decomposition of R"
as (R(y—x)) @ (R(y — x))* and Fubini’s theorem. O

Let us admit the next result, a chain rule involving the circa-Jacobian.

Theorem 5.19 ([214, Theorem 2.6.6]). Let f :=hog, where g: W — R” and h :
R? — R are locally Lipschitzian, W being an open subset of R". Then

VxeW, def(x) C co(deh(g(x)) 0 dcg(x)).
More attention has been given to the Clarke Jacobian of g than to the notion we

describe now. Given a map g : X — Y between two normed spaces and x € X, let us
introduce the multimap Acg(x) : Y* = X* with closed convex values defined by

Acg(x)(y*) = de(y™ o g) (), y ey

When f is Lipschitzian around x, Acg(x) is a bounded odd fan in the sense that there
exists K > 0 such that for all y*,z" € Y*, r,s € R one has Acg(x)(y*) C x||y*|| Bx*,

Acg(x)(ry" +52%) C rAcg(x)(y*) +sAcg(x)(z%).

This fan can be related to the circa-Jacobian of g.

Corollary 5.20. Let g : W — Y := R? be locally Lipschitzian, W being an open
subset of R". Then

VxeW, y er”, Acg(x)(y") =" o (dcg(x))-
Proof. Forevery x € W, y* € Y*, the preceding theorem with / := y* ensures that

Acg(x)(y") := de(y o g)(x) C co(y" o deg(x)) = y* 0 dcg (%),
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since dcg(x) is convex. Conversely, given A € deg(x), using Carathéodory’s theorem
in R? with ¢ := np, one can find some ; € [0, 1] with to+---+17, = 1 and some A; €
drg(x) C L(R",RY) fori = 1,...,q such that A = 19A¢ + - - - +1,A,. By definition of
drg(x) there exist sequences (x; ), —z X, fori =0,...,q such that (Dg(x; ,))n — A;
for all i € {0,...,q}. Then by upper semicontinuity of dc(y* o g) and convexity of
dc(y* o g)(x) one has

q q
y oA = ZIiy* 0A; =1lim (ZtiD(y* og) (x,;,,)) € dc(y*og)(x). O
' " \i=0

i=0

Exercises

1. Use Theorem 5.16 to compute dcf(0,0), where f : R?> — R is defined by
f(x,y) := max(min(x —y,—x —y),y). [Hint: Identify the set Ny of points of
nondifferentiability of f as

Ny={(x,y) :x <0, x=2y}U{(x,y) : x>0, x=—2y} U{0} x R_

and consider the three open connected components of R*\Ny on which f takes the
values y, x — y, —x — y respectively; conclude that d¢c f(0,0) is the convex hull of the
points (0,1), (1,—1), (—1,—1).]

2. (a) Use an example similar to the one in Exercise 1 to show that for a locally
Lipschitzian function f on the product X := X x X, of two normed spaces, neither
of the sets dc f(x1,X2), di.cf(x1,x2) X da,cf(x1,x2) is larger than the other one. Here
dicf (x1,x2) := dcf(-,x2)(x1), and a similar notation is used for d» ¢ f(x1,x2).

(b) Prove that d cf (x1,x2) C p1(def(x1,x2)), where p; : X* — X" is the canonical
projection (the transpose of x; — (x1,0)).

3. Let X, X; be finite-dimensional Banach spaces and let f € .Z(X; x X) be such
that for all x, € X, f(-,x2) is convex. Using the notation of the preceding exercise,
show that for every x; € Xi, xo € X, one has pi(dcf(x1,x2)) C di.cf(x1,x2). [Hint:
Use Theorem 5.16.]

4. Given a bounded measurable function g on an interval I of R, for x € int(I) let
a(x) :=esssupg(x) ;= sup{r: V6 > 0,u({x' € [x—8,x+ 6] : g(x') > r}) > 0}

and let b(x) := essinfg(x) := —esssup(—g)(x), U being the Lebesgue measure on 1.
Given c € I, let f(x) := [ g(s)du(s) for x € I. Show that dc f(x) = [b(x),a(x)].
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5.2 Circa-Normal and Circa-Tangent Cones

A geometric approach parallels the analytical approach we have followed up to now.
As in the case of the directional subdifferential, it has strong links with the analytical
approach and is available in both a primal form and a dual form. It is a key to
a simple way of extending the preceding concepts and rules to non-Lipschitzian
functions, a question we will deal with in the next section.

We start with the primal concept of tangent cone. Here and elsewhere, x —f a
means that x converges to a while remaining in the subset E.

Definition 5.21. Given a subset E of a normed space X and a € cl(E), the Clarke
tangent cone (or circa-tangent cone ) to E at a is the set TC(E ,a) of v € X such that
for all sequences (e,) —F a, (t,) — 04 there exists a sequence (v,,) with limit v such
that e, +1,v, € E for all n € N. Thus

1
TC(E,a):= liminf —(E—e).
(Ea) (e.)—Exp(a,0) t( )

A connection with the Clarke derivate is given in the following statement.

Lemma 5.22 (Hiriart-Urruty [481]). A vector v belongs to T (E,a) if and only
if d%(a,v) <0, where dg is the distance function associated with E.

Proof. Letv € TC(E,a) and let (t,,a,) — (0, ,a) be such that

1
dS(a,v) = limt— (dg(an+t,v) —dg(ay)).

n

Let us pick e, € E such that ||e, — ay|| < dg(ay) +12. Since (e,) — a, the definition
of T(E,a) yields a sequence (v,) — v such that e, +,v, € E for all n € N. Then

di(an+1,v) < [[(an +tav) — (en+tavn) || < di(an) +tr%+t" [v—=vall,

so that limy, 2, ! (dg(an + t,v) — dg(an)) <limy, (t, + ||y — vy|)) = 0 and d$ (a,v) < 0.

Conversely, let v € X be such that d§(a,v) < 0. Then for all sequences (t,) —
0+, (ex) —£ a, we have limsup,,t, ! (dg (e, +1,v) —dg(e,)) < 0. Since e, € E, we
have dg(e,) = 0. Let ¢}, € E be such that ||e, +1,v — }|| < d (e, +1,v) + 12 and let
v :=1t, ' (e}, — e,). Then we have e, +t,v, = ¢/, € E for each n € N and

limsup ||[v — v,|| = limsupz, e, + 1, — €} || < limsupz, ' (dg (e, +t,v) +12) < 0.
n n n

Thus (v,) — vandv € TC(E,a). O

Exercise. Check that for every subset E of a normed space X, every a € cl(E), and
every v € X one has d$(a,v) > 0. Deduce from this the relation 7€ (E,a) = {v €
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X :dS(a,v) = 0}. [Hint: For all sequences (e,) —£ a, (t,) — 0 one has d$ (a,v) >
limsup, tn’l (dg(eq+1t,v) —de(ey)) > 0.]

The main feature of the Clarke tangent cone is given in the following proposition.

Proposition 5.23. The Clarke tangent cone T€(E,a) to E at a € cI(E) is a closed
convex cone contained in the tangent cone T (E,a) to E at a (and is even contained
in the incident tangent cone T'(E ,a) := liminf,_, t~'(E — a)). Moreover; one has

T(E,a)+TC(E,a) C T(E,a),
T!(E,a)+TC(E,a) C T'(E,a),

and for every subset F of X such that E C F C cl(E) one has T¢(F,a) = T (E,a).

These inclusions may help in computing T7€(E,a), as the next examples below
show.

Proof. The closedness of TC(E, a) is a general property of inner limits. The stability
of T¢(E,a) by homotheties is obvious. The stability of 7€ (E,a) under addition
stems from the preceding lemma and the sublinearity of dg(a, -); we also encourage
the reader to give a direct proof.

Now let u € T(E,a) and v € T¢(E,a). There exists a sequence ((fy,un)) —
(04,u) such that e, := a+t,u, € E for all n € N. Then one can find a sequence
(vn) = v such that e, +t,v, € E for all n € N. Thus a+ #,(u, + v,) € E for all
n €N, and since (u, +v,) — u+v, one gets u+v € T(E,a). The proof with T'(E,a)
replaced with T/(E, a) is similar.

Since 0 € T!(E, a), we deduce from the inclusion T/(E,a) + T (E,a) C T'(E,a)
that T€(E,a) C T!(E,a) C T(E,a).

Now, if EC F Ccl(E) andv € T¢(E,a), for all sequences (t,) — 0., (fu) = a,
we can find a sequence (e,) in E such that ||e, — f,|| <12 for all n. Then (e,) —E a,
and if (v,) — v is such that e, +1,v, € E for all n, one has f, +t,w, € E C F for
Wi i= v+, (e, — f,) and (w,,) — v, so that v € TC(F,a). The inclusion T (F,a) C
TC(E,a) is proved similarly. O

The definition of TC(E,a) shows that this cone may be very small and may fail
to give a local approximation to the subset £ of X.

Example 5.1. Let E := (R x {0}))U({0} x R) C X := R?, a := (0,0). Then
TC(E,a) = {(0,0)}, whereas T/ (E,a) = T(E,a) = E.

Example 5.2 (The pie test). Let E := {(r,s) € R : s > —|r|}, a = (0,0). Then
TC(E,a) = {(r,s) € R?: 5> |r|}, whereas T(E,a) = E.

Example 5.3 (Rockafellar [880]). Let X, Y be normed spaces, let W be an open
subset of X, and let g : W — Y be a Lipschitzian map with rate c¢. Then the Clarke
tangent cone T (G, (a,b)) to the graph G of g at (a,b) € G is not just a convex cone
but a linear subspace. Moreover, (u,v) € TS(G, (a,b)) iff g is directionally circa-
differentiable at a in the direction u in the sense that for all sequences (a,) — a,
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(tn) = 04, (un) — u, the sequence ((g(an + tattn) — g(an)/ta)n converges to some
vector y € Y and y = v. In order to prove these assertions, let (u,v) € T¢(G, (a,b)),
so that for all sequences (a,) — a, (t,) — 0, since (b,) := (g(a,)) — b:= g(a), one
can find sequences (u,) — u, (v,) — v such that (ay,,by,) + t,(un,v,) € G for all n.
Then g(a, + tyu,) — g(an) = tyv, and g is circa-differentiable at a in the direction u
with derivative g’(a)u = v. Conversely, when this property occurs, for all sequences
((an,bn)) —¢ (a,b), (tn) = 04, (un) — u, for v, := (1/t,)(g(an +taun) — g(an)),
one has (v,) — v := g'(a)(u) and (an,b,) + tn(un,vs) € G for all n, so that
(u,v) € T°(G,(a,b)). Since g'(a)(—u) = —g'(a)(u) by the above definition, the
cone TC(G, (a,b)) is a linear subspace.

Example 5.4. If G is the graph of the function (x,r) — ||x| on X x R, then
T¢(G,(0,0,0)) = {0} x R x {0} although G is a Lipschitzian submanifold of
X xR x R whose dimension is the dimension of X plus 1. In this illustration of
the preceding example we see that the local behavior of G around (a,b) = ((0,0),0)
is not accurately reflected by 7€(G, (a,b)).

Definition 5.24. The Clarke normal cone or circa-normal cone Nc(E, a) to a subset
E of X ata € cl(E) is the polar cone of T¢(E,a):

Ne(E,a) := (TC(E,a))" = {x* € X" : Wv € T°(E, a) (x*,v) <0}

Since T¢(E,a) may be small, Nc(E,a) may be correspondingly large, and a
relation of the form x* € —N¢(E,a) may be poorly informative. In Example 5.1
above, for instance, one has N¢(E,a) = X*, whereas N(E,a) = {0}.

Since T€(E,a) is a closed convex cone, the first part of the following proposition
is a consequence of the bipolar theorem.

Proposition 5.25. (a) The Clarke normal cone Nc(E,a) to a subset E of X at a €
cl(E) is a weak* closed convex cone. The Clarke tangent cone T€(E,a) is in
turn the polar cone to N¢(E, a).

(b) Nc(E,a) = cl*(Ry dcdg(a)).

Proof. Tt remains to prove assertion (b). Let r € Ry and x* € dedg(a). Lemma 5.22
asserts that for every v € TC(E,a) one has dS(a,v) < 0, hence (rx*,v) < 0 and
rx* € Nc(E,a). Since No(E, a) is weak™ closed, we get clI* (R4 dcdg(a)) C Ne(E,a).

Now let a* € X*\ cl*(Rydcdg(a)). The separation theorem yields some v € X
such that (a*,v) > sup{(rx*,v) : r € Ry, x* € dcdg(a)}. Since r is arbitrarily large,
one has (x*,v) <0 forall x* € dcdg/(a), hence dS (a,v) <0and v € TC(E, a). Picking
x* € dedg(a), one has (a*,v) > (0x*,v) = 0, hence a* ¢ (TC(E,a))O := Nc(E,a),
and the proof is complete. O

The map E — N¢(E,a) is not antitone (i.e., order-reversing) and the map E —
TC(E,a) is not homotone (i.e., order-preserving), as the following examples show.

Example 5.5. Let X =R?, E := (R x {0})U({0} xR), F = R x {0}, a := (0,0).
Then T€(E,a) = {(0,0)}, T€(F,a) = F and N¢(E,a) = R?, N¢(F,a) = {0} x R.
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Example 5.6. Let X = R% E :={(r,5) : s <|r|}, F:=R xR_, a:= (0,0). Then
TC(E,a) ={(r,s) :s < —|r|}, T°(F,a) =R x R_ and N¢(E,a) = {( s):s >},
Ne(F,a) = {0} xR,

In spite of this major drawback, the Clarke tangent cones and normal cones
coincide with the usual concepts in some important cases.

Proposition 5.26. (a) IfE is a convex subset of X and a € cl(E), then T€(E,a) =
T(E,a) and Nc(E,a) =N(E,a) = {x* € X*:Vx € E (x*,x—a) <0}.

(b) IfE is a submanifold of class C' of X, then T®(E,a) = T (E,a) and N¢c(E ,a) =
N(E,a).

Proof. (a) Letv € Ry (E —a), v=r(e—a) with r € Ry, e € E. For all sequences
(tn) = 0+, (€,) — awithe, € E foralln € N, we have e, +1,r(e —e,) € E forne N
so large that t,r € [0,1] and (r(e — e,))n, — v, so that v € TC(E,a). Since T (E,a)
is closed, we get T(E,a) = cl(R, (E —a)) C TC(E,a). The reverse inclusion is a
general fact observed above.

(b) By definition of a submanifold of class C' of X, there exist a closed subspace
Y of X and a C!-diffeomorphism ¢ : U — V of an open neighborhood U of a onto
an open neighborhood V' of 0 such that ¢(a) =0 and @(ENU) =Y NV. Then
the following result shows that T€(E,a) = Do ~'(0)(T€(Y,0)) = Do '(0)(Y) =
T(E,a). By polarity, Nc(E,a) = N(E,a). O

Let us give some calculus rules for tangent and normal cones. We start with
images. Here we recall that a map 4 : X — Y is open at e € E C X from E onto
F C Y if for every sequence (y,) —F h(e) there exists a sequence (x,) —f e such
that i(x,) = y, for all n large enough.

Proposition 5.27. Let X, Y be normed spaces, let W be an open subset of X, and
let h: W — Y be a mapping that is circa-differentiable at some point e of a subset
E of W. Let F be a subset of Y such that h(E) C F. Suppose h is open at e from E
onto F. Then h'(e)(TC(E,e)) C TC(F,h(e)) and I’ (e)T(Nc(F,h(e))) C Nc(E,e).

In particular, if h is a bijection of class C' at e, with inverse of class C!
at h(e) and h(E) = F, one has W (e)(TC(E,e)) = TC(F,h(e)) and N¢(E,e) =
(K (e)T)~" (Ne(F he)))-

Proof. Letu € TC(E,e), let v :=}(e)(u), and let ((t,,y,)) be a sequence of P x F
with limit (0, /(e)). Since A is open at e from E onto F, there exists a sequence (e;,)
in E such that (e,) — e and h(e,) =y, for n large. Since u € T (E, e), there exists a
sequence (u,) — u such that e, + t,u, € E for all n € N. Then h(e, + t,u,) € F and
since / is circa-differentiable at e, v, := 1, ! (h(e, + tyutn) — h(en)) — W' (e)(u) = v.
Since y, + vy = h(en) + vy = h(en +tyuy,) € F for all n € N, one gets that v €
TC(F,h(e)). The inclusion /' (e)T(Nc(F,h(e))) C Nc(E,e) follows by polarity.
When h~! is also circa-differentiable at i(e) and i(E) = F, interchanging the
roles of 4 and h™!, we also get Dh~'(h(e))(TC(F,h(e))) C T(E,e), and since
Dh~'(h(e)) = (Dh(e)) ", equality holds. 0
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Proposition 5.28. Let X, Y be normed spaces, let A C X, B CY, and let (x,y) €
A X B. Then

T€(A,x) x TC(B,y),
Nc(A,x) X Nc(B,y).

T€(A x B, (x,y))
NC(A X 37 (x,y))

Proof. Since the projections py : X XY — X, py : X XY — Y are continuous and
open, the inclusion 7€ (A x B, (x,y)) C T¢(A,x) x TC(B,y) is a consequence of the
preceding proposition (or of the definition). The proof of the reverse inclusion is also
a direct application of the definition. Equality for normal cones follows by polarity.

O

A crucial relationship between normal cones and subdifferentials is revealed in
the next result.

Theorem 5.29. Given a function f : X — R finite at x € X and Lipschitzian around
x, let E:=epif, e:= (x, f(x)). Then

TC(E,e) =  epifS(x,-),
x*€def(x) & (x*,—1) € Nc(E,e).

Proof. Let (u,r) € TC(E,e). Let ((xXn,1)), — (x,04) be such that

£E ) =1 (1 /t) (f (o + tate) = f ()

Since f is continuous around x, it follows that e, := (x,, f(x,)) —£ e. By definition
of TC(E, e) there exists a sequence ((u,7,))n — (u,7) such that e, + t,,(u,,r,) € E
for n € N large enough. This inclusion can be written f(x,,) + 1y > f (X + taty),
and one gets f€(x,u) <lim, r, = r, so that (u,r) € epi f€(x,-).

Conversely, let (u,r) € epi f€(x,-). Let (t,) — O, (en) := (xXn,sn) —£ €. By def-
inition of £, one has limsup,,(1/t,) (f (xn + tate) — f(x)) < f€ (x,u) < r. It follows
that there exists a sequence (r,) — r such that r, > (1/t,) (f (xn +t,u) — f(xn)) for
all large n € N. Then (x,, + tyu, f(x,) +t,+,) € E, whence (x, + tyut, s, + tyry) € E
for such n’s. Therefore (u,r) € T¢(E,e).

Now (x*,—1) € Nc(E, e) means that (x*,u) —r < 0 forall (u,r) € T (E,e). Since
TC(E,e) = epi fC€(x,-), this property is equivalent to x* < f€(x,-) orx* € de f(x). O

Corollary 5.30. If f: X — R is locally Lipschitzian, then for all x € X one has
def(x) ={x" € (X" : (x",—1) € cI" )Ry dedepi (x, f(x)) }.

The last result of this section is a key ingredient for optimality conditions in
mathematical programming problems. Here g : X — R is Lipschitzian around X € X.

Proposition 5.31. LerS:={xe€ X :g(x) <g(x)}. If0 ¢ dcg(X), then one has
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{v:gf(xv) <0} C TE(S,%), (5.9)
Nc(S,)_C) CR+acg()_C). (5.10)

Proof. Since g€(X, -) is the support function of the weak* closed convex set drg (%),
which does not contain 0, there exists some u € X such that g©(%,u) < 0. Let us
show first that such a vector belongs to T (S, %). By definition of g€ (%, u), for every
o > 0 satisfying g€(%,u) < —o and for all sequences (t,) — 0, (x,) —s X, for n
large enough we have g(x, + f,u) — g(x,) < —t,0, hence g(x, + f,u) < g(x) and
X+ tau € S, since x € S means that g(x) < g(¥). This shows that u € T(S,%).

Now let v € X be such that g€(%,v) < 0. Taking u satisfying g© (%, u) < 0, since
gC(x, ") is sublinear, for all # > 0 we have g (%,v+tu) < 0, hence v +tu € T€(S,X).
Since this cone is closed, taking the limit as t — 0., we get v € T (S, %).

Since the weak* compact set deg(X) does not contain 0, the cone R4 dcg(%) is
easily seen to be weak* closed. Its polar cone is {v: g€(X,v) < 0}. Since polarity
reverses inclusions and since Q% = Q when Q is a weak* closed convex cone,
relation (5.10) follows from relation (5.9). [l

Exercises

1. Let f : R" — R be Lipschitzian around X € R", let E (resp. G) be the epigraph
(resp. graph) of f, and let X/ := (X, f(X)).

(a) Prove that f is differentiable at X iff 7(G,x;) := T?(G,X) is a hyperplane.
(b) Prove that f is circa-differentiable at X iff TC(G,Xf) is a hyperplane.

(¢) Prove that f is circa-differentiable at X iff 7€ (E,Xy) is a half-space.

(d) Show that TP (E ,Xr) may be a half-space while f is not differentiable at X.

2. Let E := R%\int RY. Compute the sets T¢(E,a) and Nc(E,a) fora € E.
3. Compute the sets T€(E,a) and N¢(E, a) for a := (0,0) and

(@) E:={(r,s) €R?: 5> —|r|*} with & > 0;

(b) E:={(r,s) eR?:5>[r|*} with a > 0.

() E:=(RxRy)U{0}xR.

4. Given E C X and v € X, let F := E +v. Show that for all a € cl(E) one has
TC(F,a+v)=TC(E,a) and Nc(F,a+v) = Nc(E,a).

5. Deduce from Proposition 5.27 that the notion of Clarke tangent cone can be

defined for subsets of manifolds of class C!.

6. The paratingent cone to a subset E of a normed space X at a € clE is the set
TP (E,a) of u € X such that there exist sequences (t,) — 0, (a,) — a, (#,) — u such
that a, € E, a, +tyu, € E for all n € N. Show that T (E,a) + T¢(E,a) C T?(E,a).
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Consider the case in which E is the graph or the epigraph of a function. Define
concepts of paratingent derivative and coderivative of a multimap.
Show by some examples that 77 (E, a) may be very large.

7. Give an example of a subset E of R? containing a := (0,0) such that 7€ (E,a) #
TP(E,a) = T'(E,a) even though this last cone is convex. [Hint: Given a decreasing
sequence (r,) — 0, define an even function f that is affine on each interval
[Fus1,7a) and such that f(ry,) =0, f(raps1) = 3,1, with limsup,, 727,,2+1(”2n+1 -
V2n+2) < oo, limsup,, V;,lal(VZn - 72n+1) < o]

5.3 Subdifferentials of Arbitrary Functions

The concepts of Clarke derivate and Clarke subdifferential can be extended to every
function either via an analytical approach or via a geometrical approach. We adopt
the second approach, which is more natural, but we also present analytical formulas.

5.3.1 Definitions and First Properties

The geometric approach relies on the relationship disclosed by Theorem 5.29.
It shows that the definition we adopt now is compatible with the one we used for
Lipschitzian functions.

Definition 5.32. Given f: X — R finite at x € X, let E :=epi f, e := (x, f(x)). The
Clarke derivate and the Clarke subdifferential of f at x are defined respectively by

FE(x,u) :=min{r eR: (u,r) € T°(E,e)}, (5.11)

dof(x) :={x"€X*: (x",—1) € Nc(E,e)}. (5.12)

Since TC(E,e) is closed, the above infimum is attained when it is finite, so
that we write min, according to a classical convention. Since for x* € X* one has

(x*,—1) € Nc(E,e) iff (x*,u) —r <0 forall (u,r) € TC(E,e), iff (x*,u) < f€(x,u),
the definition of dc f(x) can be reformulated as follows:

defx) = eX*: (*,) < fC(x, ) (5.13)

Let us note that the normal cone to a subset S at x € S can be interpreted as the
subdifferential at x of the indicator function ig of S:

Nc(S,X) = acls(x). (5.14)



376 5 Circa-Subdifferentials, Clarke Subdifferentials

In fact, since the epigraph E of 15 is S x R, by Proposition 5.28 and the fact that
the normal cone to the convex set R is the normal cone of convex analysis, one has
x* € detg(x) iff (x*,—1) € Ne(E, (x,0)) = Ne(S,x) x R_ iff x* € N (S, x).

Let us prove an extension of Proposition 5.5.

Proposition 5.33. For a function f : X — R finite at x € X, the following assertions
are equivalent:

(a) f€(x,0) > —oo;
(b) f€(x,0)=0;
(c) dcf(x) #@.

Moreover, under each of these conditions, for all u € X, one has

FE(x,u) = sup{(x*,u) : x* € dcf(x)}. (5.15)

Proof. LetE :=epif and let e := (x, f(x)). Since T (E, ) is the epigraph of £€(x, )
and (0,0) € TC(E,e), one has f€(x,0) < 0, and by sublinearity, either fC(x,0) =
—oo Or fc(x,O) = 0. Thus (a)<(b). Clearly (c)=>(a). Suppose (b) holds. Then since
f€(x,-) is lower semicontinuous and sublinear, its epigraph 7€ (E, e) being a closed
convex cone, for all u € X one has f€(x,u) > —oo. Then f€(x,-) is the supremum
of the continuous linear forms bounded above by fc (x,-): (5.15) holds and (c) is
satisfied. O

Proposition 5.34. If f : X — R is convex and finite at x € X, then dcf(x) =
ourf(x), where dyrf(x) is the subdifferential of f at x in the sense of convex
analysis.

Proof. In view of Definition 5.32, for E := epif, x* € dcf(x) if and only if
(x*,—1) € Nc(E,e) = N(E,e) (Proposition 5.26), if and only if x* € dyrf(x). O

Proposition 5.35. If X,Y are normed spaces, if f € F(X), g € F(Y), and if h is
defined by h(x,y) := f(x)+g(y), then for all (x,y) € domh, (u,v) € X x Y one has
BE((x,y), (,v)) < €0 u) +850nv), (5.16)

dch(x,y) C dcf(x) X dcg(y). (5.17)

Proof. Letq: X xRxYXR—X xY xRbegivenby q(x,r,y,s') = ¥,y ,r +5)
and let xy 1= (x, f(x)), yg := (».8(y)), zn := (x,y,h(x,y)). Since g is a continuous

linear map that is open from epif x epig onto epih as is easily seen, Propositions 5.27
and 5.28 ensure that one has

q(T€ (epif,xy) x T (epig,yg)) = q(TC (epif x epig, (x7,¥;)) C T (epih, zp).

Thus, for all (u,r) € TC(epif,xs), (v,s) € TC(epig,y,) one has (u,v,r +s) €
T€ (epih, zy,), hence h€((x,y), (u,v)) < r+s. Taking the infimum over r > f€(x,u),
s > g%(y,v), one gets inequality (5.16).
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Now let (x*,y*) € dch(x,y). Since (0,0) € T (epig,y,), for every (u,r) €
TC(epif,xs), the inclusion of the first part of the proof yields (u,0,r) € T (epih, zy),
hence h¢((x,y), (u,0)) < f€(x,u), so that {(x*,u) = {(x*,y*), (,0)) < fC(x,u) and
x* € dcf(x). The relation y* € dcg(y) is obtained similarly. O

A precise analysis of the normal cone to the epigraph E of a function f will
be useful. With this aim, let us introduce the Clarke singular (or asymptotic)
subdifferential of f at x as the set

o5 f(x):=={x"€X":(x",0) € Nc(E,e)}. (5.18)

Proposition 5.36. Let f : X — R be finite at x € X and let e := (x, f(x)), E := epi f.
Then oF f(x) is a weak” closed convex cone and one has the decomposition

Ne(E,e) = (P(def(x) x {=1}) U (e f(x) x {0}). (5.19)

Moreover, dcf (x) + 95 f(x) = dcf(x). If dcf(x) is nonempty, then o7 f(x) is the
recession cone of dc f(x) and Nc(E,e) =R (dcf(x) x {—1})+ I f(x) x {0}.

Proof. The right-hand side of relation (5.19) is clearly contained in the left-hand
side. Let (x*,7*) € Nc(E, e). Then for every (v,r) € T¢(E,e), one has (x*,v) +r*r <
0. Since T€(E,e) is an epigraph and contains (0,0), one has r*r < 0 for all r €
Ry, hence r* < 0. If r* = 0, one has x* € 97 f(x); if r* < 0, by (5.12), one can
write (x*,r*) = [r*| (x*/ |r*|,—1) € P(dcf(x) x {—1}), so that in both cases (x*,r")
belongs to the right-hand side. When dc f (x) is nonempty, the last equality is an easy
consequence of the first one and of the convexity of N¢(E, e).

Given y* € dcf(x) and z* € 9% f(x), one has (y* +z",—1) = (y*,—1) + (z*,0) €
Nc(E,e), hence y* + 2" € dc f(x). In fact, since 0 € JF° f(x), the inclusion dcf(x) +
o f(x) C def(x) is an equality. Finally, the last assertion corresponds to a general
fact in convex analysis: the preceding inclusion shows that JF f(x) is contained in
the recession cone of de f(x); on the other hand, given a* € dc f(x), if x* belongs to
the recession cone of def(x), for every r € Ry one has (a* +rx*,—1) € Nc(E,e),
hence (x*,0) = lim,_, 4o 7~ 1 (a* + rx*, —1) € Nc(E, ), so that x* € 95 f(x). O

Corollary 5.37. If f : X — R is Lipschitzian around x, then o7 f(x) = {0}.

Proof. When f is Lipschitzian around x € X, the set dcf(x) is bounded and
nonempty, so that its recession cone ¢ f(x) is {0}. O

The calculus rules we have in view in the next subsection will require “quali-
fication conditions,” i.e., additional assumptions. We take a geometric approach to
dealing with them in introducing a notion of locally uniform feasible direction.

Definition 5.38. The (circa-)hypertangent cone H®(E,a) (or H(E,a) for simplic-
ity) to a subset E of X at a € cl(E) is the set of vectors u € X for which there exists
€>0suchthate+rve E foralle € ENB(a,€),t € (0,€),v € B(u,e). Equivalently,
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uc H(E,a) < V(ey) —Ea, (th) = 04, (up) —u, IMeN:Vn>m, e, +tyu, €E.

When the set H(E,a) is nonempty, we say that E has the cone property around a,
or that E is epi-Lipschitzian at a. This property plays an important role in the study
of elliptic partial differential equations and in shape optimization.

Example 5.1. Let E be the epigraph of a Lipschitzian function f : W — R on some
open subset W of a normed space X. Then u := (0,1) € H(E,a) forall a € E, as is
easily checked. This partially explains the terminology.

Example 5.2. Let E be a convex subset with nonempty interior. Then E has the
cone property around all a € cl(E). In fact, givena € cl(E), u € X such thata+u €
intE, one can find € € (0, 1) such that B(a +u,2¢) C E, whence for e € ENB(a,€),
t€(0,€),veEB(u,e)onehase+ve B(a+u,2¢),hencee+tv=(1—t)e+t(e+v) €
E by convexity.

Example 5.3. Suppose X is finite-dimensional. Then one can show that a subset £
of X has the cone property around a € E if and only if T€(E,a) has nonempty
interior (Exercise 5). The necessity part of this assertion is proved in the next
theorem.

Theorem 5.39. The set H(E,a) of hypertangent vectors to a subset E of X at a €
cl(E) is an open convex cone contained in T (E,a). Moreover one has

TC(E,a)+H(E,a) = H(E,a).
If E has the cone property around a (i.e., if H(E,a) # &), then one has
H(E,a) =intT¢(E,a), TC(E,a)=cl(H(E,a)) Nc(E,a)= (H(E,a)).

Proof. Since 0 € T(E,a), the inclusion H(E,a) C T(E,a) + H(E,a) holds. Let
u€ H(E,a)andv € TC(E,a). Given sequences (e,) =g a, (t,) — 04, (wy) = w:=
u+v, one can find a sequence (v,) — v such that x,, := e, +1,v, € E forall n € N.
Since (u,) := (wp — vy) — u, one has x, +t,u, € E for n large, hence e, +t,w, € E
for such n’s. Thus w = u+v € H(E,a). The convexity of H(E,a) is a consequence
of the inclusions H(E,a) C TC(E,a) and T¢(E,a) + H(E,a) C H(E,a).

Since H(E,a) is open and contained in 7€ (E, a), one has H(E,a) C intT“ (E,a).
Conversely, given v € intT¢(E,a), assuming one has some u € H(E,a), for r >0
small enough, one can write v = (v—ru) +ru € T(E,a) + H(E,a) C H(E,a).
Therefore H(E,a) = intT®(E,a) in such a case. Moreover, for every w € T¢(E, a)
one has w = lim,(w + 2 "u), with w+2""u € H(E,a) for all n € N, hence w €
cl(H(E,a)). Since T (E,a) is closed and contains H(E,a), the equality T¢(E,a) =
cl(H(E,a)) holds whenever E has the cone property around a.

Givena* € (H(E,a))’,u€ H(E,a),andw € T¢(E,a), taking w,, := w+2""u, we
see that (a*,w) = lim,(a*,w,) <0, hence a* € N°(E,a) and (H(E,a))° C Nc(E,a).
The reverse inclusion follows from the containment H(E,a) C T (E,a). O
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Exercise. Show thatif E has the cone property around a, then H(E,a) = H(cl(E),a).
This fact is used in the proof of the next corollary.

Corollary 5.40. Suppose that E has the cone property around a € cl(E). Then the
multimap N¢(E,-) is closed at a on cl(E): if (x,) — a in cI(E), (x}) has a weak*
limit point x* and x; € N¢(E,x,) for all n € N, then x* € N¢(E, a).

Proof. Since E has the cone property around a, one has T (E,a) = cl(H(E,a)), so
that it suffices to show that (x*,u) <0 forall u € H(E,a) when x* is a weak™ cluster
point of a sequence (x}) as in the statement. The definition of H(E,a) shows that
u € H(E,x) C T¢(E,x) for x € clE close enough to a; thus one has (x},u) < 0 for n
large enough. Taking a weak™* converging subnet, one sees that (x*,u) < 0. (]

Let us give an example of the use of the hypertangent cone.

Proposition 5.41. Let E and F be two subsets of X and let a € cl(ENF) be such
that T¢(E,a)NH(F,a) # @. Then T®(E,a) N T¢(F,a) C T°(ENF,a).

Proof. Let u € TC(E,a) N H(F,a). For all sequences (a,) —gnr a, (t,) — 04 one
can find a sequence (u,) — u such that a,, +t,u, € E foralln € N. Since u € H(F,a),
one has a, + t,u, € F for n large, hence a, + t,u, € ENF for n large and u €
TC(ENF,a).

Now let v € T¢(E,a) N TC(F,a) and let v, = v+ 2 ¥u for k € N. Then v €
TC(E,a)NH(F,a) by Theorem 5.39 and the convexity of 7€ (E,a). The first part of
the proof shows that v; € T€(E NF,a). Since this cone is closed and since (v;) — v,
one gets v € TC(ENF,a). O

The cone property will be used for functions through the following definition.

Definition 5.42. A function f : X — R finite at x € X is said to have the cone
property around x if its epigraph E has the cone property around e := (x, f(x)).
More precisely, f is said to have the cone property around x (or to be directionally
Lipschitzian at x) in the direction u € X if (u,r) € H(E,e) for some r € R.

Let us present some concrete criteria for the cone property for f : X — R.

Proposition 5.43. Under each of the following conditions f has the cone property
around x € f~'(R):

(a) f is Lipschitzian around x.

(b) f is convex and bounded above on some neighborhood of some point y.

(c) f isthe indicator function 1s of a subset S having the cone property around Xx.

(d) f is nondecreasing with respect to the order induced by a convex cone K with
nonempty interior.

(e) X is finite-dimensional and intdom f€ (x,-) is nonempty.

Proof. (a) If f is Lipschitzian around x, then one has (0,1) € H(epif, (x, f(x))).

(b) Suppose f is convex and bounded above by m on some neighborhood of some
point y. Then (y,m + 1) belongs to the interior of the epigraph E of f, so that E has
the cone property around (x, f(x)) by Example 5.2 above.
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©) If f =15, u € H(S,x), then (u,r) € H(S x Ry, (x,0)) forall r > 0.

(d) Suppose f is homotone with respect to the order induced by K, i.e., that
F(&) < f(*") when ¥, X" € X with x” —x' € K. Given u € —intK, let us show
that (u,1) € H(epif, (x,f(x))). Let us pick € € (0,1) such that B(u,e) C —K.
Then for every (w,s) € epif, t € (0,1), v € B(u,e), r € [l —¢,1 + €], we have
tv € —K, hence f(w+1tv) < f(w) <s <s+trand (w+1v,s+1tr) € epif; thus
(u,1) € H(epif, (x, f(x))).

(e) Suppose X is ﬁnite dimensional and intdom fc( -) is nonempty. Then the

convex function f€(x, ) is continuous on intdom f€ (x, ), so that T (epi f, (x, f(x)))
has nonempty mterlor Since X is finite-dimensional, we get that epi f has the cone
property by Example 5.3 above. (]

It can be shown that f has the cone property around x € f~!(R) in the direction
u if and only if

FO(x,u) := inf sup
e>0

{f(w—i—tv)—s

- :(t,w,v) €Ty X B(x,€) x B(u,€),s € If(x,w,s)}

(5.20)

is finite, where T; := (0,€), Ir(x,w,€) := {s € (f(x) —¢&,f(x) +€) :5 > f(w)}.
Moreover,

(u,r) EH(E,e) & fO(x,u) <r, (5.21)

so that fO(x,u) = inf{r: (u,r) € H(E,e)}. When f is continuous at x it can be
checked (exercise) that the complicated expression for £ (x,u) boils down to

fOx,u) = limsup %(f(w—i—tv) —fw)).

(t,v,w) = (0+ u,x)

When f is Lipschitzian around x, one has f°(x,-) = f¢(x,-).

Proposition 5.44 ([875]). If the function f : X — R is finite at x € X and has
the cone property around x, then f°(x,-) = f€(x,-) on domf°(x,-), and f°(x,-) is
continuous there. Moreover, the following equivalence holds, and if X is complete,
then dom f°(x,-) = intdom f€ (x

x* € def(x) & x* < fOx,-). (5.22)

Proof. Suppose f has the cone property around x. Let E be its epigraph and

= (x,f(x)). Then dom f°(x,-) is the projection px(H(E,e)) of H(E,e) on X.
Since the canonical projection px : X x R — X is open 12 (H (E,e)) is open.
Thus, dom f°(x,-) C intdom f€ (x,-). Moreover, f°(x, > 7C(x, smce the strict
epigraph of fo( ) is H(E,e) C T(E,e) = eplfc . Now f0 -) is convex
and locally bounded above at each point of dom fo( ) = px(H (E e)). Thus
#°(x,-) is continuous on dom £V (x, -). Moreover, for each u € dom f°(x, ) and each
s> fc(x u), there exists a sequence ((u,,,s,,)) — (u,s) with (up,s,) € H(E,e), since
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H(E,e) is dense in T¢(E,e) = epi f€(x,-). Therefore f°(x,u) = lim, f°(x,u,) <,
whence f°(x,u) < f€(x,u) and equality holds.

Relation (5.22) is a consequence of the following string of equivalences, which
stems from Theorem 5.39: x* < fO(x,-) iff (x*,u) < r for all (u,r) € H(E,e) iff
(x*,—1) € (H(E,e))* = (T(E,e))’ = Ne(E, e) iff x* € de f(x).

If X is complete, the lower semicontinuous function f€ (x,-) is continuous on the
interior of its domain, so that for all u € intdom f€ (x,-) and all s > f€(x,u) one has
(u,s) €int(T(E,e)) = H(E,e), hence f°(x,u) <sand u € dom f°(x,-). O

Corollary 5.45. If f : X — R is finite and continuous at x € X and has the cone
property around x, then — f has the cone property and

dc(—f)(x) = —dcf(x). (5.23)

Proof. Let E (resp. F) be the epigraph of f (resp. —f) and let e := (x, f(x)),
¢ = (x,—f(x)). Given x* € dc(—f)(x), let us show that —x* < fO(x,-) or that
(—x*,u) < rforall (u,r) € H(E,e). It suffices to prove that for all (u,r) € H(E,e)
we have (—u,r) € H(F,€'). Let ((xp,50)) —F €, (ta) = 01, ((—ttn,rn)) = (—u,r).
Since f is continuous, we have (f(x, — tyun)) — f(x), so that for n large enough,
(xn — tattn, f(xn — tyup)) + tn(un,ry) € E, or f(x,) < f(xn — thity) + tyry, hence
(xn — tattn, — f (xn) + tyry) € F and also (x, — tytty, sy +tyrn) € F. Thus (—u,r) €
H(F,e). O

Exercises

1. Let S be a subset of a normed space X, let a € cl S, let 15 be the indicator function
of S, and let E := S x R . Check that T¢(E, (a,0)) = T¢(S,a) x R and

(1) (a,) = 17¢(5,0) ()-

2. (a) Show that for a function f : X — R finite at x € X and u € X one has

f€(x,u) = inf sup inf E (flw+1v)—s),
€20 (1, 11,5)€(0,8) x B(x,&) x I (x,w,e) vVEBu,E) T

where I¢(x,w,€) :={s € (f(x) —¢€, f(x)+¢€) :5 > f(w)}. Prove that when f is lower
semicontinuous at x, this expression can be slightly simplified into

F€(x,u) = inf sup inf l(f(w—i—tv) —fw)),

€20 (1 w)e(0,e) xB(x.e.f) vEB(u:) 1

where B(x, €, f) := {w € B(x,¢€) : | f(w) — f(x)| < €}. When f is continuous at x,



382 5 Circa-Subdifferentials, Clarke Subdifferentials

F€(x,u) = inf sup inf
€>0(; w)e(0,6) x B(x,e) VEB(1,€)

() = F0).

These expressions show that € (x,-) is the upper epi-limit as (¢,w,s) — (0,x, f(x))
in P x epif of the functions f;, given by fi,.s(v) =t ' (f(w+1v)—s) for
(t,w,s) € P x epif. Although this connection with variational convergences is
important, one may prefer to use a geometrical approach rather than an analytical
approach relying on these formulas when dealing with Clarke derivates.

(b) Prove relation (5.20) when f has the cone property around x € f~! (R) in the
direction u.

3. Show that a function f : X — IR may be finite at x € X and have the cone property
around x and satisfy 7 f(x) # {0}. [Hint: Take for f the indicator function of a
subset having the cone property around x, and observe that d7 f(x) = dcf(x) is a
cone. ]

4. Show that the inclusion dch(x,y) C dcf(x) X deg(y) for h given by h(x,y) :=
f(x) +g(y) may be strict.

5. Show that when X is finite-dimensional, for ¢ € E C X one has H(E,e) =
intTC(E,e). (See [873].)

6. Let E,F be subsets of a normed space X and let x € ENF be such that
TP(E,x) N TC(F,x) is convex and TP (E,x) NH(F,x) # @. Show that T?(E,x) N
TC(F,x) C TP(ENF,x). [Hint: Use Theorem 5.39 and the inclusion T?(E,x) N
H(F,x) C TP(ENF,x) to get that for every v € TP(E,x) N T¢(F,x) and all u €
TP(E,x)NH(F,x),t € (0,1) one has v, := (1 —t)v+tuec TP(E,x) NH(F,x).]

7. With the notation and assumptions of the preceding exercise, suppose that
TC(F,x) = TP(F,x). Then show that T?(E,x) N TP (F,x) = TP (ENF,x).

5.3.2 Regularity

Calculus rules can be improved when one assumes that the functions are regular
enough. A precise meaning can be given to the word “regular.” Let us observe
that the results below could be given variants by assuming coincidence of the
Clarke notions with the incident ones (instead of the contingent ones), a requirement
weaker than the one in the next definition.

Definition 5.46. A subset E of a normed space X is said to be circa-regular, or
Clarke-regular, or simply regular if there is no risk of confusion, at a € cl(E) if
TC(E,a) =TP(E,a).

A function f: X — R finite at x € X is said to be circa-regular, or simply regular,
at x if its epigraph is regular at (x, f(x)), or equivalently, if f€(x,-) = fP(x,-), the
lower directional derivate of f at x.
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The dual requirements are equivalent to the respective primal properties:

Proposition 5.47. A set E is regular at a € c|(E) if and only if Nc(E,a) = Np(E , a).
A function f : X — R is regular at x € f~(R) if and only if dc f(x) = dp f(x) and
o f(x) = dp f(x).

Proof. 1t T€(E,a) = TP(E,a), then N¢(E,a) := (T€(E,a))’ = (TP(E,a))’ :=
Np(E,a). Conversely, suppose Nc(E,a) = Np(E,a). Then by the bipolar theorem,

%5 7P(E, a),

TC(Eva) = (NC(Eva))O = (ND(Eva))O = (TD(E,CZ))

and since T¢(E,a) C TP(E,a), equality holds.
If f is regular at x € f~!(R) then, denoting by E its epigraph and setting
e :=(x, f(x)), one has Nc(E,e) = Np(E,e), so that dc f(x) = dpf(x) and 97 f(x) =
d; f(x). Conversely, suppose dcf(x) = dpf(x) and J7 f(x) = dp; f(x). Then by
Propositions 4.18 and 5.36, one has N¢(E,e) = Np(E,e). Thus E is regular at e
and f is regular at x. O

Every convex set is regular at every point of its closure, and every convex
function is regular at every point of its domain. If a function f : X — R is finite
at x € X and is circa-differentiable at x, then one sees that f is regular at x and
def(x) ={f'(x)}, I f(x) =95 f(x) = @. If G C X xY is the graph of a map
g : X — Y that is circa-differentiable at x, then G is regular at (x,g(x)). Other
examples arise from the calculus rules we present in the next subsection. Let us
complete Proposition 5.31 with the following simple observation.

Proposition 5.48. Let g be Lipschitzian aroundX and let S :={x € X : g(x) < g(X)}.
If0 ¢ dcg(X) and if g is regular at X, then S is regular at X and one has T (S,X) =
{v:gf(x,v) <0} =TP(S,%).

Proof. Let v € TP(S,X): there exist sequences (t,) — 04, (v,) — v such that
X+ 1,V € S or g(X+1,v,) < g(%) for all n € N. Then one has g”(%,v) < 0, hence
g€ (x,v) < 0 by regularity of g at X and v € TC(S,X) by Proposition 5.31. Since
T€(S,x) C TP(S,X), the announced double equality ensues. O

5.3.3 Calculus Rules

The following result generalizes both Propositions 5.27, 5.41 and will be a key to
some calculus rules.

Proposition 5.49. Let XY be normed spaces, let W be an open subset of X, let
F (resp. G) be a subset of X (resp. Y), and let g : W — Y be a mapping that is
circa-differentiable at some point a of E := F N g~ '(G). Suppose A(TC(F,a))N
H(G,b) # @, where A = g'(a), b := g(a). Then T(F,a) NA~(T€(G,b)) C
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TC(E,a). If F and G are regular at a and b respectively, then equality holds and
E is regular at a.

Proof. Let us first show that if u € T€(F,a)NA~'(H(G,b)), thenu € T (E,a). Let
(t,) = 04, (ay) —£ a. Since u € TC(F,a), there exists a sequence (u,) — u such
that a,, +t,u, € F for all n € N. Then since g is circa-differentiable at a,

Wy = é (glan +tauy) — glan)) = w:=A(u).
Since w € H(G, b), there exists m € N such that g(a, +t,u,) = g(an) + taw, € G for
all n > m. Thus a,, + t,u, € E for n > m and one gets that u € TC(E,a).

Now let v € T¢(F,a)NA~!(T(G,b)) and let vy = v+ 2 *u for k € N, where u
is as above. Then v € T (F,a) NA~!(H(G,b)) by Theorem 5.39 and the convexity
of T€(F,a). The first part of the proof shows that v; € T€(E,a). Since this cone is
closed and since (v;) — v, one gets v € TC(E, a).

Suppose F (resp. G) is regular at a (resp. b). Then since TP (E,a) C TP(F,a) N
AN (TP(G,b)), we get TP (E,a) C TC(E,a), and these inclusions are equalities. [J

One can easily derive a chain rule from the preceding proposition.

Theorem 5.50. Let X,Y be normed spaces, let W be an open subset of X, let g :
W — Y be circa-differentiable atX € X of X, and let h: Y — R be finite aty := g(X).
Let f :=hog. Suppose there exists some u € X such that h°(y,g'(X)(u)) < +co. Then

FERE) <HF,)od (), (5.24)
acf(®) C (§(®)" (ch(y)) := dch(y) o g'(%). (5.25)

If his regular aty, (5.24)and (5.25) are equalities.

Proof. Letk: X xR — Y x R be given by k(x,r) = (g(x),r) and let E (resp. G)
be the epigraph of f (resp. k), so that E = k~!(G). Let a := (%, f(%)), b := k(a),
A :=K(a). Since k is circa-differentiable at @ and since our assumptions ensure that
K (a)(u,r) = (g'(x)(u),r) € H(G,b) for r > h°(y,g'(¥X)(u)), taking F := X x R, and
replacing g by k in the preceding proposition, we get A~ (T€(G,b)) C T€(E,a), or
equivalently, relation (5.24).

Let X* € dcf(X). Then by relation (5.24), one has X* € d (h°(3,-) 0 g'(¥)) (0)
in the sense of convex analysis, and by our qualification assumption and Corol-
lary 5.44, h€(y,-) is continuous at some point of g’(X)(X). Thus, the chain rule of
convex analysis ensures that ¥* € dch(y) o g'(X).

When K€ (y,-) = hP(3,-), (5.24)is an equality, since h”(y,-) o g'(x) < fP(%,) <
f€(x,-). Moreover, since h“ (¥, -) is convex and continuous at g’(¥)(u), (5.25)is an
equality by a composition rule of convex analysis. (]

Now let us turn to a rule for the sum of two functions.
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Theorem 5.51. Let f,g: X — R be two functions finite atx € X, lower semicontin-
uous at X, and such that dom f€ (%,-)Ndom g° (X, -) # @. Then the following relations
hold; they are equalities when f and g are regular at x:

(f+8)°®x-) < fC(x, %, (5.26)
9c(f+g)(7) C 9cf(7f) + 9cg(7)- (5.27)

Proof LetF :=epif xR CX xR?, G:= {(x,r,s) € X x R?: (x,s) € epig} and let
E:=FNG,e:= (%, f(%),g(X)). Then TC(F,e) = T (epi f, (X, f(¥))) x R and

H(G,e) = {(x,r,5) € X x R*: (x,5) € H(epig, (%,g(%)))}.

Thus, we have (u,r,s) € TC(F,e) NH(G,e) for every u € dom € (%,-)Ndomg°(%,-),
r> fC(x,u), s > g°(x,u). It follows from Proposition 5.41 or Proposition 5.49 that

TC(F,e)NTC(G,e) C TS (FNG,e) =T (E,e).

Now the epigraph H of f + g is the image of E by the continuous linear mapping
h:X xR? — X xR given by h(x,r,s) = (x,7+s5). The map  is open at e from E onto
H = h(E), since for every sequence ((xn,qn)) = f(X)+ g(x), setting s, := g(x,),
n = ¢qn — Sn, one has, by the lower semicontinuity of f and g at X,

liminfr, > liminf f(x,) > f(¥), liminfs, > liminfg(x,) > g(%),
n n n n

hence limsup, r, < lim,(r, +s,) — liminf, s, < (f(X) +g(xX)) — g(X) = f(X) and
similarly limsup,, s, < g(%), so that ((xn,7n,sn)) — (%, f(X),g(X)). We conclude
from Proposition 5.27 that i’ (e)(T(E,e)) C TC(H,h(e)). Therefore, since /' (e) =
h, we have

h(TC(F,e)NTC(G,e)) C W (e)(TC(E,e)) C T (H,h(e)),

and by definition of &, (f +¢)(%,-) < fC(%, X,-).

Since g€(,-) is finite and Contmuous at some u 6 dom f€ (%, ), relation (5.27)
follows from the classical sum rule for subdifferentials of convex functions.

When f and g are regular at X, taking into account the relations fP(x,-) +
PE) < (f+2)PF,) < (f+g)C(x,), we get equality in (5.26). Then (5.27) is
also an equality by the rule of convex analysis we just used. O

Corollary 5.52. Let f : X — R be lower semicontinuous and finite at ¥ € X and let
g be locally Lipschitzian around X. Then relations (5.26), (5.27) hold.

Proof. This follows from the relations domg° (%, ) = X, 0 € dom f€ (%, ). O

Corollary 5.53. Let S be a closed subset of X and let X € S be a local minimizer of
a locally Lipschitzian function j. Then 0 € dcj(X) + N¢(S,%).
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Proof. Taking for f the indicator function of § and g = j, the result is a consequence
of the preceding corollary and of the rule 0 € de(j + ts) (X). O

Corollary 5.54. Let f, g1,...,8k be locally Lipschitzian functions and let X be a
minimizer of f onthe set S:={x€X :gi(x) <0i €N }. Let I := {i € Ny : g;(x) = 0}.
Suppose

(ti) S Ri, ;,=0Vie Nk\l, 0e tlacgl()?) +- "—I—l‘kacgk()_c) — 1, =0VieNy.
Then there exist x* € dcf(X), yi € Ry, x] € dcgi(X) for i € Ny such that
X4yxi+ =0,  yigi(X)=0 forallieN;. (5.28)

Proof. Since dcg;(¥) is nonempty for all i € Ny and y; = 0 for i € Ni \ I, we may
suppose I = Ny. Let g := max;es g;. We cannot have 0 € dcg(%), since otherwise,
we could find some 7 € Ry with sum 1 such that 0 € t;dcg; (X) + - - - + tdcgi (%),
a contradiction to our qualification condition. Now, by Theorem 5.10, dcg(%) is the
convex hull of the sets deg;(¥) for i € I. The Karush-Kuhn-Tucker relation (5.28)
ensues. Proposition 5.31 asserts that N¢(S,%) C R4 deg(%). O

There is a special result for separable functions that does not require any
qualification condition. However, it is just an inclusion, not an equality as in the
case of the Fréchet subdifferential.

Proposition 5.55. Let X and Y be normed spaces and letg: X — R, h:Y — R be
finite and lower semicontinuous at X € X andy € Y respectively. Then for f given

by f(x,y) = g(x) +h(y), one has dcf(X,y) C dcg(x) x dch(y)-

Proof. The roles of g and & being symmetric, it suffices to show that for every
(x*,y*) € dcf(X,¥) one has x* € deg(x). This will be a consequence of the fact that
setting p := f(X,¥), g := g(X), for every (u,r) € T (epig, (¥,g)) one has (u,0,r) €
T (epif,(%,y,P)), since then one has (x*,u) —r = ((x*,y*), (u,0)) — r < 0. Now,
for (u,r) € T (epig, (X,g)) and sequences (t,) — O, ((Xn,Yu,Pn)) — (%,9,D) in
epif, one has ((xn,qn)) —epig (X,9) for gn := g(xn) + pn — f(xn,¥n) = Pn— h(yn):
since g and h are lower semicontinuous at X and y respectively, liminf, g, >
liminf, g(x,) > g(¥) := g, while limsup, ¢, < lim, p, — liminf, h(y,) <7 —h(y) =
g(%). By definition of TC(epig, (¥,7)), there exists a sequence ((uy,r,)) — (u,r)
such that (x,,q,) 4 t,(un,r,) € epig for all n € N. Then

g(xn + tn“n) + h()’n) < gn+tyry+ h(yn) = Pn+taly
and (x, + tyltn, Y, pn + tarn) € epif for all n € N. This shows that (u,0,r) €
T (epif, (%,3,D)). O
Let us turn to properties involving order.

Theorem 5.56. Let f,g: X — R be two functions finite and lower semicontinuous
at X € X and such that dom € (%,-) Ndomg’(x,-) # @ and f(%) = g(X). Then for
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h:=fVg:=max(f,g), the following relations hold; they are equalities when f and
g are regular at x:

hE(x,) < fO(x) Vel (®,), (5.29)
3ch(%) C co(dcf (%) Udeg(3)) U (3cf (7) + A g(3) U (08 £(3) + dcg (). (5.30)

Proof. Let F :=epif, G:=epigandlete:= (X,h(X)) € H :=epih. Since H =F N
G, Proposition 5.49 shows that T€(F,e) N T(G,e) C T (H, e), with equality when
F and G are regular at e. Then, using the indicator functions of these cones and a
sum rule of convex analysis, one gets N©(H,e) C N¢(F,e) +N¢(G, e) with equality
when F and G are regular at e. Given z* € dch(X), writing (z*,—1) = (x*,—r) +
(v*,—s) € NC(F,e) + N°(G,e) with r,s € R, and considering separately the three
cases (r,8) € Px P, (r,5) = (1,0), and (r,s) = (0, 1), we get inclusion (5.30). [

Proposition 5.57. Let f = hog, where g: W — R is lower semicontinuous on an
open subset W of X and h : S — R is defined and continuous on an open interval
S of R containing g(W). If h is circa-differentiable at 5 := g(X) with h'(5) > 0, one
has dcf(x) = W (5)dcg(X).

Proof. The inverse function theorem ensures that there exist open intervals J C S,
I C R containing 5 and 7 := h(5) respectively such that / induces a homeomorphism
from J onto /. Then, denoting by F' (resp. G) the epigraph of f (resp. g), one has
(x,r) € FN(W x 1) if and only if (x,s) € GN(W xJ) and r = h(s). Since h : (x,s) —
(x,h(s)) is a homeomorphism from W x J onto W x [ that is circa-differentiable at
(%,5), h~! being circa-differentiable at (¥,7), one has (¥*,—1) € N¢(F, (%,7)) if and
only if (x*,—H'(5)) € Nc(G, (,5)) or X* € dcf(x) if and only if y* :=X* /I (5) €
dcg(X). O

Now let us consider extensions of Proposition 5.14 about performance functions.

Proposition 5.58. Let A € L(V,W) be a surjective, continuous, linear map between
two normed spaces, let j:V — R, p: W — R be lower semicontinuous and such
that p o A < j. Suppose that for some v € V and all sequences (wp) —, W := A9,
(o) — O one can find a sequence (v,) — V such that j(v,) < p(w,)+ o, and
A(vy) = wy for all n € N. Then one has

AT(@cp(W)) € (). (5.31)

When p is the distance function to a subset S of W and w € clS, the assumption can
be restricted to sequences (wy) —Win S.

This result takes a simpler form when W =V, A is the identity map, and j is such
that j > p:=ds and j = 0 on S. Then one has deds(X) C dcj(%) forall X € S.

Proof. Let us denote by E (resp. P) the epigraph of j (resp. p), let us set
¥ := (v,j(¥)), ¥ := (W, p(W)), and let us show that for all (u,r) € T¢(E,X) we
have (Au,r) € TC(P,y). Given sequences (t,) — Oy, ((Wn,s,)) —>p ¥, We use our
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assumption to pick a sequence (v,) — ¥ such that j(v,) < p(w,) +12 < s, +12
and A(v,) = wy, for all n € N. Then j(v) < liminf, j(v,) < limsup, j(v,) <
lim, s, = p(W), and since poA < j, equality holds and (j(v,)) — j(¥). Moreover,
((Vnysn +12)) —E (v, j(V)) :=X, so that there exists a sequence ((uy,r,)) — (u,7)
such that (v,,s, +t,%) + t,(up,ry) € E for all n. Then since poA < j, we get
(Avi,$n) + tn(Aup,rn +1,) € P for all n. Since (Au,) — Au and (t, + r,) — r, this
proves that (Au,r) € TC(P,y). Taking polars, we get that for all (W*,7*) € Nc(P,y)
we have (ATW*,7*) € N¢(E,X). Taking 7* = — 1, we obtain (5.31).

Now let us suppose p = dg, where S is a subset of W and w € clS. Again we
have j(v) = p(w), since we can find a sequence (w,) —s w. Let X := (¥,0), y :=
(w,0). Let us prove again that (Au,r) € TC(P,y) for all (u,r) € T°(E,X). Given
sequences (,) — 04, ((wy,s,)) —p ¥, we pick sequences (w),) in S, (v},) — v such
that d(w),,wy) < ds(wy) +12 < s, +12, j(v,) <t and A(v},) = w], for all n € N.
Then ((V,,22)) —£ (7, (7)) :=X, so that there exists a sequence ((u,,7,)) — (u,7)
such that (V/,,2) +t,(un, ) € E for all n. Then since po A < j, we get (AV/,,12) +
tn(Auy,ry) € P for all n. Since dy is Lipschitzian with rate 1 and d(w),, w,) < s, + t,%,
we get (Wy, sy +2t,%) +1,(Auy,ry) € P forall n. Since (Au,) — Au and (r, +21,) — r,
this proves that (Au,r) € TC(P,¥). Then the proof can be finished as above. O

An analogue of Proposition 4.49 is valid for the Clarke subdifferential.

Proposition 5.59. Let f: X — R, g: Y — R be lower semicontinuous functions on
normed spaces X and Y respectively, and let h: X XY — R be given by h(x,y) :=
max(f(x),g(y)). Suppose that for some (%,5) € X xY one has f(x) = g(y) € R.
Then

Ich(%,3) C co((dcf(X) x {0 U ({0} x dcg())) = |J (1-2)dcf (%) x 2dcg ().
A€[0,1]

Proof. Using support functions, it suffices to show that for all (u,v) € X X ¥ one
has

hE((%,5), (u,v)) < max(f€(x,u),8°(5,v))-

By definition of €, given s > max(f€ (%,u),g" (y,v)) we have to prove that for any
sequence (,) — 0. and any sequence ((x,,yn, 7)) in epih with limit (X,y,4(X,5))
one can find a sequence (¢, Vn,sn)) — (u,v,s) such that (xXn,yn, 7) + b (Un, Vi, $n) €
epih for all n. Since ((xn,r)) — (%,f(X)) in epif, we can find a sequence
((un,pn)) — (u,s) such that (x,,r,;) + tn(un, pn) € epif for all n. Similarly, one
can find a sequence ((vy,¢n)) — (v,) such that (yu, ) + (v, qn) € epig for all
n. Then, taking s, := max(p,,q,), we get the required sequence. O

The proof of the following result is similar to the proof of Corollary 4.80. It is
also a consequence of the fact that 5? is bounded above by the similar index build

with dr f or dp f.

Proposition 5.60. For every Banach space X and for every f € F (X), the function
5? : X — R given by 5?()() = inf{||x*|| : x* € dcf(x)} is a decrease index for f.
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Lebourg’s mean value theorem can be extended to non-Lipschitzian functions.
Its statement is similar to the one for the Fréchet mean value theorem, but it is valid
in every Banach space. Its proof being identical to the one for that subdifferential,
in order to avoid repetition, it will not be presented here.

Exercises

1. Given f: X — R and x € f~!(R), show that for every r € R, ¢ € R, X € X, for
g givenby g(u) := f(u+X%)+c, one has dc(rf)(x) = rdcf(x), deg(x —X) = de f(x).

2. Given f: X — R, x€ f~!(R) and £ € X*, show that for / := f + £ one has
hE (x,u) = € (x,u) + (L,u), dch(x) = dcf(x)+ L.
More generally, show thatif g : X — R is circa-differentiable at x, h := f+g, then

hE () = £ (x,u) + (g (x),u), dch(x) = def(x) + g (x).

3. Give an example of two functions g : X — R, h: Y — R such that for f given by
f(x,y) := g(x) 4+ h(y) the inclusion dc f(X,¥) C dcg(X) X dch(y) is strict.

4. (a) Give an analytic proof to Theorem 5.51. [See [214, pp. 102—-105] or [874].]
(b) Give an analytic proof to Theorem 5.50. [See [214, pp. 106-108] or [874].]

5. LetA:V — W be a surjective continuous linear map between two normed spaces,
let j: V — R be lower semicontinuous, and let p : W — R be Lipschitzian with
rate ¢ near some w € W. Suppose that j > poA and that for some v € A~! (W)
and all sequences (w,) — W, (t,) — O one can find a sequence (v,) — ¥ such
that (1, ' (j(va) — p(wn)) + cty ' [|A(va) —wa||) — 0. Then adapting the proof of
Proposition 5.58, show that

AT(dcp(W)) C dcj(¥).

6. Combine Theorems 5.50 and 5.51 to deal with the subdifferential of a function
of the form f + ho g. Give also a direct proof using Proposition 5.49.

7. Define the radial hypertangent cone H'(E,a) to a subset E of X at a € cl(E)
as the set of vectors u € X for which there exists € > 0 such that e +tu € E for
all e € ENB(a,e), t € (0,€). Note that H(E,a) C H'(E,a) C T°(E,a) and that
H'(E,a) is a convex cone.
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5.4 Limits of Tangent and Normal Cones

We have seen the interest in assuming regularity in order to transform the inclusions
of calculus rules into equalities. Now we intend to relate the concepts of this chapter
to limiting notions and to find links with regularity.

We shall show that in finite dimensions, the Clarke tangent cone can be consid-
ered the persistent parts of the tangent cones at nearby points, i.e., the limit inferior
of the tangent cones at neighboring points as they converge to the nominal point.
We also investigate generalizations of this characterization to infinite-dimensional
spaces. A first step is the following inclusion.

Theorem 5.61 ([784]). For every subset E of a Banach space X and every a €
cl(E) one has
liminf7? (E,x) C T¢(E,a). (5.32)

X—Ega

Proof. Givenv € X\T€(E,a), let us show that there exists & > 0 such that
V6 >03ecB(a,8)NE:  Bva)NTP(E,e) =2, (5.33)

i.e., v ¢ liminf,,,, TP (E,x). By definition of T (E,a) there exists 8 > 0 such that
Vp>03xeB(a,p)NE, It €(0,p): (x+tB(v,B))NE=2. (5.34)

Pick a € (0,). Given 6 > 0, let p € (0,1) be such that p(||v|| + a+1) < 8. Then
taking x and ¢ as in (5.34), for all ¢ in the drop D(x,B) := co({x} UB) with B :=
Blx +tv,tal], one has |le—al < |le—x| + |[x—a| <t|v||+to+p < &. Setting
C:=R,(B—x)=RyB[v,al, the truncated drop theorem (Lemma 1.99) yields some
e € END(x,B) such that EN (e +C)NB(e, B — &) = {e}. It follows that TP (E,e) N
B(v,a) = @. O

In order to state the following consequence, let us say that E is sleek at a € cl(E)
if the multimap TP (E,-) is lower semicontinuous at a on E U {a}.

Corollary 5.62. If a subset E of X is sleek at a € cI(E), then it is regular at a.

Proof. Since sleekness at a means that T7P(E,a) C liminf,_,,, TP (E,x), the regu-
larity of E at a stems from the inclusions (5.32) and T¢(E,a) C TP(E,a). O

Theorem 5.61 has interesting consequences concerning continuous tangent
vector fields. In essence, it implies that for continuous vector fields, it is equivalent
to taking the tangency condition in the sense of the tangent cone or in the sense
of the Clarke tangent cone. This fact, expounded in the next statement, is just a
consequence of the characterization of lower semicontinuity of a multimap in terms
of selections.

Corollary 5.63. Given a subset E of a Banach space X and a € cl(E), letv:EU
{a} — X be continuous at a and such that v(x) € TP(E,x) for all x € E. Then
v(a) € TC(E,a).
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An inclusion opposite to the one in Theorem 5.61 can be obtained, provided one
replaces the tangent cones T? (E, x) with the weak** tangent cones T**(E, x), where
T**(E,x) is the set of limit points of bounded families (¢~ !(e, — x));~0 in X** for
the weak™* topology o(X**,X*), where ¢, € E for all t > 0. Here we consider that
X (hence E) is embedded in the second dual space X** and we set T°(E,x) :=
T**(E,x) N X. Thus, the definition of 7°(E,x) differs from that of T?(E,x) by
the use of the weak topology instead of the strong topology. When X is reflexive,
T°(E,x) = T**(E,x). Of course, when X is finite-dimensional, one has 7° (E,x) =
TP(E,x).

Theorem 5.64. Let E be a subset of a Banach space X and let a € cl(E). Denote
by Nzl (E,a) the set of weak® cluster points of bounded sequences (x) such that for
some sequence (x,) — a, one has x; € Np(E,x,) for all n. Then one has

liminf TP (E,x) € TC(E,a) C liminfT**(E, x), (5.35)

X—Egd X—Egd

N$Y(E,a) C Nc(E,a). (5.36)

In particular, if E has the cone property at a or if X is finite-dimensional, one has
TC(E,a) = liminf,,, TP (E,x) and E is sleek at a if and only if E is regular at a.

Proof. To prove (5.35) it remains to show that given v € T€(E,a) and € > 0, one
can find 6 > 0 such that for all x € ENB(a, 6) one has (v+ eBx+)NT*(E,x) # &,
where By++ is the closed unit ball in X**. Since dg(a, v) <0, let & > 0 be such that
t ' (de(x+1v) — dg(x)) < & for all (t,x) € (0,8) x B(a, ). Then for all € (0,6),
x € ENB(a,8) there exists some ¢, € E such that ¢! ||x+1v—e, .|| < & Forx €
ENB(a,8), since the family (¢~ !(e; —X))ie(0,5) is contained in B(v,€), hence in
the closed ball v+ €By++, which is o (X**,X*)-compact, it has a weak™ cluster point
uy € v+ €Bx= ast — 0. By definition, we have u, € T**(E,x). Thus (5.35) holds.

In order to prove (5.36), let a* € N{'(E,a), v € TC(E,a) and let us show that
{a*,v) < 0. By definition of N§'(E,a), there exist a bounded sequence (x}) and
a sequence (x,) —g a such that ¢* is a weak™ cluster point of (x}) and x} €
Nr(E,x,) fo